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ABSTRACT

Since its original proposal in 1961, the Particle-and-Force (PAF)
method for numerical fluid dynamic studies has been improved considerably
and tested in a variety of new circumstances. This report, consisting of
two parts, discusses at length a number of properties of the method from
conceptual, practical, and experimental points of view.

Part I is directly concerned with the methodology, giving in detail
the procedure as it is now applied. It also includes the results of ex~-
perimental calculations, the conclusions, and a discussion of extensions
now being developed. Part II delves more deéply into the meaning of the
particle representation of fluid dynamics through a close examination of

some pertinent idealized computer experiments.
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PART I

THE METHOD AND ITS APPLICATIONS
INTRODUCTION

The Particle-and-Force method was first described in a report [I-1]
written in 1961. The discussions given in that report are, to a great
extent, still pertinent. Principal exceptions include the method of
neighbor choice (page 12) and the manner in which the force function is
derived (pages 16-19). Some of the more important parts of that paper
are repeated in Part I here; others are omitted or merely sumarized.

Tn the Introduction to the sbove mentioned report, a discussion is
given of the various techniques which have commonly been used for com-
puter studies of time-dependent fluid dynamics in several space dimen-
sions. The principal conclusion from that discussion is that no method
exists which ig universally applicable; each method has limitations.
This means that the method must be chosen in each case to fit the require-
ments at hand. There remain, however, many situations which still cannot
be computed by any one technique, or in many cases even by an appropriate
combination. The situation is shown in general terms in Table I-1.

A second PAF-method report [I-2] shows by statistical analysis how
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the PAF interparticle force can be mede to correspond to the form of the
equation of state. These results have been extended and generalized in
this report.

In any practical PAF-method calculations, yit is essential to use a
large, high-speed electronic computer. The examples presented in this
report were obtained with an IBM-T094 computer, and configurational out-
put was processed through a Stromberg-Carlson SC-4020 Microfilm Recorder.

Chapter 1 presents a detailed discussion of all aspects of the PAF
methodology from both conceptual and practical points of view. Some ac-
tual tests of the computing technique are described in Chapter 2, while
Chapter > contains some discussion of future plans for development, gen-
erslization, and extension of the PAF technique. Five Appendixes have
been included; they contain a number of additional topics supplementing

the remarks in the body of the report.
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CHAPTER 1

DESCRIPTION OF THE METHOD

A. DIFFERENTIAL THEORY

The particles whose dynamics we follow are to represent the elements
of a fluid. Insofar as possible, we have_ used the classical particle-
dynamics theory to aid in the formulation of the method. At some point,
however, a divergence from the classical theory will be necessary so
that the dissipative effects in a real fluid can be represented. Our
particles are not molecules whose internal energy is carried by velocity
fluctuations; indeed, we expect that the velocity of a particle is to re-
present the mean velocity of the finite mass of fluid it represents. The
macroscopic kinetic energy of the fluid is to be exactly the kinetic
energy of all the particles, so the internal energy must be represented
by an additional variable. If this variable is expressed as a function
of particle positions alone, then only adiabatic motion can be rep:e-
sented. Compression and subsequent expansion would then retum the set
of particles to exactly their initial configuration with no dissipation.
Thus a special prescription is needed to describe variations of particle

internal energy.




We consider the dynamics of a set of particles described by the fol-

lowing nomenclature:

i,j = indexes describing the particle muber,

mass of particle #3,

m, =
?j = space coordinate of particle #3,
\’i’j = velocity of particle #J,
Fij = force exerted by particle 44 onto particle #3,
r.=T -7,
IR R R
o = ‘? |;
ij ij
-

8y = ?1 j/ri ; (a unit vector pointing from particle #i
to particle #j),

mji?j = momentum of particle #J,

=ln?d ,-E)j = kinetic energy of particle #3,

X.
J 2 JJ
J.
J

-y

My

= internal energy of particle #3.

Additional nomenclature will be introduced as required.
We commence by assuming that the particles are governed by the equa-

tions of motion

dﬁ’j *
s aE o / Fiy (1-1)
T

B B

= a*a (1-2)

The summation over i modified by the presence of * does not include

the texm i = J, and is further restricted to include only certain
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neighbors of j as discussed later. Summation without * includes all par-

ticles in the systenm,
Next, we assume that the force function can be divided into two parts,

-

- -
Fis = 815845 * &y (1-3)
where
fij = f(rij,Ji,JJ.).

The first term in the force is to be associated in form with the equa-
tion of state of the fluid; the second term ig introduced to achieve dissi-
pation in the same manner as the "artificial viscosity" of Von Neumann and

Richtmyer [I-9], or for the purpose of including real viscous effects.

1. Correspondence with Fluid Mechanics

The correspondence with fluid mechanics comes through an examination
of the conservation laws in forms appropriate to the nature of the con-
timm to be represenfed. In this discussion, the coordinate system is
Cartesian; cylindrical coordinates are considered later in this chapter.

a. Conservation of mass. This is automatic. Each particle hag con-

stant mass, m 3 80 that the total does not change with time. Iikewige
the change of mass in any fixed volume exactly equals the amount flowing
over the bounding surface.

b. Conservation of momentum. To satisfy this requirement » the re-

striction is the same as in classical particle dynamics, nsmely

-

-)
Fi j = -F 31 To demonstrate this, consider the momentum change rate of a

prarticular subset of all the particles

-14-




R - *
@- = m j‘;‘u—'i = i"
at j at 13°
j(subset) j(subset) i

We break the sum over i into two parts and write

pre *
a _ = =
T F,.+ F

i(inside) J(subset) = i(outside) J(subset) d
where inside and outside refer to inclusion or exclusion from the subset.
In the first double sum, each pair of particles enters twice, so that
the total contribution to the sum from & particular pair is ;ij + f")j 5
Since there must be no contribution to momentum change from particles
within the subset, the sum of the two terms must vanish. The second
double sum does not thereby vanish, since each palr enters only once.
Thus with ;i j = '_:ji , the momentum change of any subset of particles
arises only through external forces, as required.

The restriction also means that

T35 = L5y
Y o2 (1-4)
8155 "851°

c. Conservation of energy. Here we must make a break from the

usual procedure in particle mechanics. In devising a reasonable approach,
we will be able to establish some of the crucial parts of the technique.
The basis for the energy discussion is that the rate of change of energy

of a particle should be given by the rate that the other particles do work

-15-




on it. This work rate is in turn given by the product of force by velocity.,
(To ve properly symmetric » the velocity through which the work flux is car-
ried from one particle to another must be the mean value of the two veloci-

ties.) Thus we write

F& - Z* - @) (1-5

It follows that the total energy of an isolated system is conserved,

*
1 -1 F oo .2y
E=% Z(KJ+JJ)-2 ZZ Fij(ui+u,j)"o’
J J 1

where equality to zero follows from separste vanishing of the sum of con-
tributions from each pair. ILikewise the energy of the particles in any
subset changes only through work done on them by external particles.

Now, we already know that

-
dK, du
——J. =M ﬁ’ . ——i
at JJ at
*
_ - e Z o d
= uJ i Fij.
Combination of this with Eq. (I-5) can be arranged to glve
*
aJ
. 1_ = o 2 - T .
wl-1 ), Ry "), (-6)
i

or

-16-




aJ * dr *

_i_ _ _1_ i 1 =2 =

®T -2 z f357a T2 Z PN E)J)' (1-7)
i i

B. FINITE TIME INTERVALS

In practice, the numerical computations must proceed through a
sequence of finite time advancements whose steps are of duration 5t. This

is accomplished through a replacement of Egs. (I-1), (1-2), and (I-6) by

1—1>n+1 _ E’n * -
pd b= ) H (1-8)
i
— n+1 -0
3 "%y _ =n#l
5t = uj ’ (1‘9)
n+1 n
J -Jd *
I Fo(gpod | gotd (1-10)
ot 2 i3 \'1 J ’
i
where
1
‘?n.p—z-alé (?n + -911+1).

This shows how the variables for cycle #n+1 are obtained algebraically

from those of cycle #n. The choice of time-centering of the equations is

justified as follows:

Equation (I-8) — At the beginning of the calculations for advance-
ment through a cycle, the only information available for the force
calculation is that which pertains to the beginning of cycle #n.
The force is thus labeled with index n.

Equation (I-9) — After calculation of the new velocity by Eq. (I-8),
there is some arbitrariness as to what velocity should be used to

-17-




determine the new coordinate. Tt was shown on page 18 of Ref.
I-1 that the newly calculsted velocity is preferred to that
vwhich the particle had at the beginning of the cycle. The argu-
ment is based upon requirements of computational stability.

Equation (I-10) - The right side contains the average of the
old and new velocities, a combination which is introduced to
assure rigorous energy conservation in the time-difference form
of the equations., (Mass and momentum have likewise been con-
served; proof of this is the same ag that for the differential
equations.) To demonstrate energy conservation we start from
the identity

\2 2 1
1 [(—) n+1> (—) n) ] -y n+§ =0+l on
- u, =-\u, =u ‘lu - U .
2 J J J J J

Thus, from Eq. (I-8), the change in kinetic energy of a particle isg

*
1
K§+ -K?:Stz f;
1

Combination of this with Eq. (1-10) gives for the change in total
particle energy, E 5

* 1 1
RS Z %J.(,—;in@ * ‘?;111#2—)‘ (z-11)
i

- -
Since Fj; = -Fi4, this result shows that the energy transferred
from parficle # to particle #j is equal in magnitude to but
opposite in sign from that transferred from #J to #i, thus prov-
ing the contention of conservation.

C. DISSIPATION

There is at least one other form alternative to Eq. (1-10) waich
could be considered for the internal energy calculation. The total energy
difference could be calculated in a form analogous to Eq. (I-11), but
without any time-centering of the right side. The result would still be

conservative as long as the proper reciprocal symmetries were preserved.

-18~




From the new total energy of the cell, the new kinetic energy could then
be subtracted, giving the new internal energy.

The reason for the specific choice of the form of Eq. (1-10) fol-
lows from the requirement of monotonic dissipation. The use of Eq. (1-10)
(with the proper choice of the E’ij forces) can never result (at least to
lowest order in &t) in decreased entropy, while most of the alternative

forms can produce such decreases under certain circumstances. . -

D. NEIGHBORS

The menner in which a particle's neighbors are chosen has evolved
partly from the demands of the method and partly through experiment. We
already have mentioned some basic considerations of the method which place
two primary restrictions on the choice of neighbors:

1. Particles shall interact only with adjacent particles.

2, A particle's effect on its neighbor must be reciprocated, i.e.,if i
is a neighbor of j, then j must also be one of i's neighbors.

The first condition is necessary for the representation of a fluid in which
jnteractions are only with adjacent elements, while the second is required
for rigorous momentum and energy conservation.

The neighbor search technique which will be described here satisfies
both of these criteria and, in addition, is particularly suited to effi-
cient memory storage assigmnment. A search radius, R, and a maximum number
of neighbors, N*, are predetermined for each problem. Among all of the
particles in the system which 1ie within the search radius of particle #3,

*
the N closest particles are tentatively chosen to be neighbors. Any of

-19-




these which do not similarly find j as one of their N* closest neighbors
are then subtracted from the list, thereby insuring reciprocity. Good re-
sults have been attained by choosing N* equal to twice the number of di-
mensions of the problem.

By restricting neighbors to only the N* closest particles, this pro-
cedure reduces the danger of interactions with nonad jacent particles in
highly compressed regions, where mumerous particles lie within the search
radius. At the same time, however, the search radius restriction allows
an interaction cutoff, which also can be useful. For instance, if one

wishes to drive a shock through a fluid at rest, R can be chosen less than

the interparticle spacing in the undisturbed material, so that this mater-
ial will remain undisturbed until the shock reaches it, Also, when a par-
ticle becomes detached from the main body of the fluid, it will cease to
accelerate or to change its internsl energy. This would not be true if
there were no limit on R. In that case, the particle would continue to
cool until its internal energy became negative and its force attractive.
This meaningless local occurrence could play havoc with the rest of the
calculation.

An alternative method of achieving neighbor reciprocity would be to
add rather than subtract neighbors, but the subtractive method has the
- distinct advantage for the programmer that he can place an upper limit
on the storage requirements for interparticle relationships. Tests indi-
cate that the two methods produce equally good results.

The success of the PAF method depends to such a large extent upon

-20-




the proper statistical averaging of interparticle fluctuations that it
seems necessary to search for neighbors every time cycle. It would be
preferable to avoid this, because it is by far the most time-consuming
phase of the calculation, requiring 50 percent or more of the calcula-
tion time. Therefore, experiments are being performed to see under
what circumstances the neighbor gearch can be conducted less often. In
addition, an attempt has been made to speed up this part of the calcula~-

tion as much as possible.

1. The Neighbor Search Technique

The first step in the current neighbor search technique is to over-
lay the computational system with a grid of square cells, each cell hav-
ing a side of length R, the search radius. The particles are then clas~-
sified according to the cells in which they fall and the actual search
for neighbors begins. For any given particle J, the distances to all
other particles within its own or a neighboring cell are computed and
compared with R. If any such distance, rij’ is less than R, then 1 is
1isted as a neighbor of j and J is listed as a neighbor of i, unless
either i or j already has a full quota of neighbors. Then rij would be
compared to the distances to the other neighbors, and the most distant
particle would be dropped as a neighbor.

In order to achieve the greatest possible speed with this method,
it is imperative to choose R as small as accuracy will permit. The cus-
tomary choice is gbout one and a half times the anticipated particle

separation in the least compressed region.

-21-




If one starts at the lower left-hang corner of the cell mesh and
works from left to right and upward through the cells, it is possible to
restrict somewhat the nunber of cells which must be searched for neigh-
bors of any given particle. For exsmple, if particle J lies in cell
(%, 2), then it 1is necessary to search only through cells (x,2), (x,2+ 1),
(k+1, £-1), (k+1,£), and (k + 1,2+ 1) for neighbors of j. It j
had additional neighbors in other cells bordering (k,l), this fact would
have already been determined in searching for neighbors of those particles.,

After these tentative nelghbor determinations have been made, a

second pass is made through the particles, dropping neighbors as necessary

for reciprocity.

E. FORCES

A theory of correspondence between fluig dynamics and the PAF model
has been worked out [I-2] which makes use of the methods of statistiecal
mechanics. The conclusion is that if the method can be developed in such
& manner that each particle follows closely the local mean of motion with-
out extreme fluctuations, and if the force functions are chosen according
to a prescribed format, then the results should satistically represent

the fluid dynamics as desgired.

1. Equation of State Force

The correspondence analysis [I-2] incicates that the nondissipative
part of the force function, fﬁJ(riJ’Ji’JJ)’ should be associated with the
equation of state of the fluid through an integral equation which in two-

dimensional Cartesian space has the form

-22=




2 o
olmp,T) = 2= [ oo Ie(xD) ax, (1-12)

0o
where
m = particle density (assumed constant),
p = particle density (particles per unit area),
T = specific internal energy,

p = pressure (force per unit distance),

X=X i .j,

o = a radial function describing the density of neighbors,
as defined in the previous section. The exact form of

o is not uniquely determined, the only restriction
being that it satisfy

@ *
x [ o) as =¥ (1-13)
o)

In Ref. I-2, Eq. (I-12) is solved for the case in which ¢ is approxi-
mated by a step function. This formulation has proven satisfactory when
applied to a polytropic equa.tiOn of state,* but for more complicated
equations of state it may lead to a force function that does not vanish
at normal density and zero internal energy. This difficulty can be
avoided by choosing a form of o which is consistent with these require-
ments. We now describe a method for determining such a form.

Assume that the equation of state can be expanded in powers of the

compression minus one:

*
Tt can, in fact, be shown that every form of o vhich satisfies Eq. (I-13)
will produce the same force function for a polytropic equation of state.
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w0 = ) 40 (2 1)
k

The nondissipative part of the force function will then have a similar

appearance
50 =2" ) n(n) (2y -1,
X
k 0

and the right-hand side of Eq. (I-12) will consist of a series of inte-

grals, one for each value of k. Since

P(DO)I) = AO(I)’

0 must be of such a form that each such integral vanishes when mp = Po?

except the one for which k = 0.

Consider a typical term from the series,

v (mp,I) = B (I)f H2 (;—'z - 1) o(px> ) ax.

Iet ¢ = px » to obtain

v (mo,1) = J o{1-0)/2 Bk(I)j g(“””/a(f" - > o(t) at,

n+

|
:m

- n).n'

If the integrand is independent of n, then v(pO,I) = 0, as it should.
This suggests that

o(¢) = (constant) 8(¢ - 1),

-2l




vhere b signifies the usual Dirac function. Equation (T-1 3) may be used to

evaluate the constant and we obtain
*
N
o(t) = i 8(g - 1)

with this form of o, the correspondence equation becomes

1 %2 ® 2 2
p(mp,I) =z N p f “£(x,I) 8(px - 1) dx.
0

2
Again, let & =

p(mp,T) = T N*p%J;w 62 (j-f?:) (e - 1) at
Ltk (E,I).A

In plene coordinates, p = 1/r§ 5’ go we can Tinally write the correspon-

the nondissipative part

dence between the equat:lon-of-state pressure and

of the force as

by
f(r yx) = ——i{i %} I) . (I"’1 h')
) N 13

Applying this formula to a polytropic equation of state,

p= (y - 1ol Gives

(= 3,1)-—%(7-1)——1
T1)
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which, as indicated, is the same expression one would get using any form

of ¢ which satisfies Eq. (I-13). When we use Eq. (I-1%4) for a "stif-

fened" gas equation of state, p = (y - 1)l + a(mp - po) , we obtain

2
N rij N rid

Notice that the bracket term vanishes at normsl density. Using for ¢ the
step function employed in Ref. I-2, one arrives at the same expression as
in Eq. (I-15), except that the bracket term is

2

-,

which does not vanish at normal density.
The same correspondence result is derived by a virial gapproach in
Appendix A, and it is also shown there why the number of neighbors per

particle must be twice the mumber of space dimensions.

2. Dissipative Force

Reference I-2 also provides a correlation between the dissipative
force and “true" viscosity,* 80 that theoretically one could include real
viscous effects in.the calculation. As a practical matter, however, the
main requirement of a dissipative mechanism in PAF is, as in all finite
difference methods which are not inherently stable, to prevent the growth
of instabilities. In all of the experiments reported here only the mini-

mm amount of this "artificial” viscosity required for stability has been
employed.

*The theor%' of correspondence for dissipative forces is discussed in
Appendix B,
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Dissipation is only required in those portions of the fluid which
are undergoing comparison; hence the dissipative force, 'g"i 5’ between
particles i and J is nonzero only when E;J-(ﬁ’i - \"i’j) > 0, In a previous
report on the PAF technique [I-1], a dissipative force of the type

'g';_d:ma(ﬁ;—\?)

3 (1-16)

was proposed, where ® was a constant with dimensions of reciprocal time.
But, in Appendix II of Ref. I-1, it was demonstrated that this form of
the dissipative force did not rigorously conserve angular momentum; there-

fore, an alternative of the form

b o (B D -T I1
g 4 mmsi,j[s:lj (uy uJ)] (1-172)

was suggested. Not only does a force of the type Eq. (I-17a) conserve
angular momentum, but it also gives a measure of the compression between
particles i and j. [Note that Eq.(I-17a) represents the component of
Eq. (I-16) lying along the line of particle centers.] Thus Eq. (T-172)
is consistent with the one-dimensional stability analysis which assumes
that all compression is head-on; it is less likely to lead to interpene-
tration than is Eq. (I-16) for a large (but theoretically stable) value
of .

The two forms, however, share the drawback of being independent of
the interparticle spacing. Thus the dissipative force 1is the same when
the particles are a search radius apart as when they almost coincide.
This situation has been corrected in subsequent work by employing one or

the other of the following modifications of the type Eq. (I-17a) force,
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- _ om -
&3 T 5 42 (I-17p)
mou )%, (@, - 2]
0[ i i
E:l.j = L 1] riJ d ?id (T-17¢)

where ® is now dimensionless and Y, is chosen equal to a typical sound
speed for the problem. The first of these two forms has been in the most
common usage; the second one is reserved mainly for problems whose initial
conditlons require the material to be cold. The forece Eq. (I-17b) is

patterned after a form suggested by Landshoff [I-10]; the square-root fac-

tor is simply proportionsl to local sound speed in a polytropic gas and
closely related to it for many other materials.

F. CYLINDRICAL COORDINATES

Meny fluid dynamics problems deal with flows which possess an angular
symuetry about some axis through the flow field. To allow the PAF method
to take advantage of this symmetry requires certain modifications of its
concepts. The particles now become rings about the axis of symmetry and,
since rings at differemt radil occupy different volumes, it has been con-
venient to make the mass of a particle proportional to its initial distance
from the axis if the density throughout the fluid is constant.

At the present time, no correlation theory such as that given in
Ref, I-2 exists for cylindrical coordinates. (Some newly derived results
are given in Appendix C.) Therefore, iﬁ order to arrive at a force func-

tion appropriate to these rings about the axis, it was necessary to resort
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to the equations of motion themselves. This approach lacks the unam-
biguity of the theoretical correlation method, so there were, as might be
expected, several false starts. We review the major one of these in
order to demonstrate some of the rather subtle difficulties which can

arise with PAF and to show how these were eventually avoided.

1. A Preliminary Cylindrical Coordinate Force

In flows possessing cylindrical symmetry, a cylindrical shell of
f£luid is seen to have a radial acceleration which is independent of
exterior forces and depends only upon the pressures that exist within
the shell (for example, see pages 33 and 34 of Ref. I-11). The average

radiasl acceleration of such a shell is given by

du T
r _ - 2
mEE " (pA)inside (pA)outside + 2xL L p dr, (1-18)
1

where A refers to the surface area (inside or outside) of the shell of

thickness r, - 1‘1 and length L. If we

consider the PAF particles to be arranged

in a rectangular array (as in the accom- sjejejejele
e|loiojeojoje

panying figure),then, since each particle o|lo|efele]e

actually represents a toroidal shell of elelefrlol® ¢

£Iuid about the cylindrical axis, Eq.
(I-18) might be suitable for the derivation of the radial nondissipative
forces felt by a particle. Assuming a polytropic equation of state,

p=(y - 1)pI, Eds (I-18) can be rewritten
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dv J J J
mg=(r-1) 5% - & +\= s
inside outgide particle

vhere v (= ur) 1s the radial component of velocity and L is taken to be
the interparticle spacing in the Z direction. Since the treatment in
the Z direction is entirely unchanged from that of plane coordinates, it
would seem that the nondissipative portion of the force felt by particle
J could be written

F, =;* [(z_;'l) (%) gij] 2 ;;)J 7, (1-19)

where T is a unit radial vector.

The self-administered force, the second term on the right in
Eq. (I-19), is the force exerted on the particle by the rest of its own
ring. It is positive for positive J and can be thought of as a self-
expanding force, tending to carry the particle away from the axis of
symuetry.

Extending this same meaning to the dissipative part of the force,
one can view the self-administered part as the compressive force which re-
sults whenever the radius of the ring decreases. The force is in the
positive r direction, so we could think of it as the force exerted by
the image of the particle through the axis of symmetry. Therefore, the
self-administered part of the dissipative force should be obtainable from

the normal dissipative force with the velocity of the neighbor, u,, re-

Ty
i
Placed by -?j- At the time that these forces were derived for cylindrical
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coordinates, a dissipative force which was the sum of the expressions in
Egs. (I-16) and (I-17a) was being used. Hence, the self-administered dis-
sipative force was taken as

A
i {-2::1‘_](6)1 + (na)vjr when vy <0

€, S
0 when vJ >0,

and the entire force exerted on particle j was

- * (3, +J,) .

- y4 -1 i -) = _ = o o

g _Z {< 2 > riJLsiJ +mg g0 (8 - W) + om0 08 40 () uJ)]'é;J}
i

(1-20)

for a polytropic equation of state. Here, m ., = 1/2 (mi +m j)'

i

Several problems were run using this force function. When applied
to a problem involving flow past a cone, it was discovered that the shock
reflected from the face of the cone did not take the form expected, but
became elongated with time in the radial direction. This difficulty was
traced to the Pact that the self-expanding force was producing an exces=-
sive mass flux away from the axis of symmetry.

As a result of this discovery, the derivation of Eq. (1-20) was re-
examined., It was realized then that a cylindrical shell of fluid bounded
by free surfaces would expand both inward and outward at escape velocity,
and that the net increase in outward momentum was simply a result of the

fact that more mass was exposed to the outer surface. The nonnegative




self-expanding force was therefore clearly wrong. What was needed was a
force function which would allow an unconfined fluid to expand in all
directions in a manner that was consistent with the equations of motion
in cylindrical coordinates. |

Very often in the derivation of finite difference formulas it is
found that equivalent differentisl expressions can give rise to difference
equations with markedly different properties. Such is the case here; for

if we return to the momentum equation with cylindrical symmetry,

p§2=-%r-%2z (1-21)

from which Eq. (I-18) was obtained, we can derive force expressions which

do not give rise to these large mass fluxes.

2. The Present Cylindrical Coordinate Force Function

Once again, let us consider the particles to be in rectangular array
and examine the effect of the r component of Eq. (I-21) along a radial
line in this array. By referring to the particles along this line by an
index number, k (which increases with radius), we can write

mk dvk 1
TE T Pedt g T P T Ged) (1-22)
vhere we have added artificial viscosity terms, g, in the form of pres-

sure modifications. Assume that

-1 J + J. _
pkt%=(7'l)pk_+%1k_1=(7 g) > kﬂ):




i {fc mpki%ﬁki%(vm.l - vk) if >0

qm% 0 otherwise,

where the Gki—l- is some as yet undesignated quantity having the dimension
2

of a velocity. Then we can rewrite Eq. (1-22) as

T, 4t 2

w

?3&:(7-1)[ T * Tk Tt * % ]
r,)

2T Te) e T

+ ® [(mk - mk-) = 1(; V-)u.i 1) <“‘k+1 ;mk> -(r:l:%;«VKH 361;4%].

k+1 k)

If, as in Eq. (I-17b), we choose

Jk+1 + J k|

e Myt

and meke the substitution

this equation can be expressed as

av.

iy -1)r[ Jk+Jk1 e T ]
"k E 7 {7y + T -7 ) (B EENICAEEN

+ or [ 17 e Pt T | B!
k (7 + Ty NTy = Ty

} ) Prnt * %P ¥ mk)] ]

( K+ “’“ k+1"rk)




Thus, generalizing to any random array of particles, we obtain for the

T component of the interparticle force the expression

2 () = T
1) (rJ RN

(1-23a)

X [(7 - 1)(g, + Iy +<°'s’m-(f?i - ?J)\/IJi + 3] (m, + ma)] ,

vhere the term with @ in it is set to zero if not positive. The

z component of the force carries over directly from plane coordinates,

z

-2z
F (Z) = -lj_.j;
1 2:':‘%J

(1-23b)

X [(7 - 1)(Ji + JJ) +<u§:’lj-(ﬁ;. - ﬁ’j)‘/pi + JJI(mi + m:jT *

Notice that this choice of -ﬁkil produced a gij force of the type Eq.
2

(I-17b). If we had chosen Hki—é— = constant, we would have obtained a force
of the type Eq. (I-17c).

A study of the function expressed in Egs. (I-23) confirms that it
does satisfy the requirements demanded of a force function for calcula-
tion in cylindrical coordinstes. First of all, having been derived from
the equations of motion in that coordinate system, it is consistent with
them to at least first order.

The other quality which we demanded of a cylindrical coordinate
force function was that it allow an unconfined fluid of uniform density

and internal energy to have the same rate of expansion in the positive

e




and negative radial directions. The force function expressed in Egs.
(1-23) does have this property. To see this, consider a system in which
all particles have gpecific internal energy, :0‘ The radial acceleration

imparted to particle #J by its neighbor, #i, is

5%(32 I'r(m+ : I:m) {CJ > [(7 - D+ m?ﬁ.(‘?i ] 1'1’3)‘[_18] }

In +this uniform density fluid, particles are equally spaced and have

masses proportionsl to their redii. All particles, therefore, experience
the same acceleration, so rarefactions mo#e into the fluid from the inte-
rior and exterior boundaries at the se.me‘ velocity.

Conservation of energy in a cylindrical coordinate system requires,
as it did in the plane coordinate case, that the rate of change of the
energy of particle j be given by the rate that other particles do work on
i{t. This work rate is in turn given by the product of interparticle
forces times appropriate velocities less the portion of this product which
is attributable to self-expanding forces. Since the total energy of the

system must be conserved, we have

% - =
Y G - & oo o st smennon)
- = F, 3 5 - 3% nergy of Self-Expansion)( =
3 1

Thus the rate of change of the energy of self-expansion is given by

Py b G § el ] e

(r'j + ri)r,

iJ i

vhere [ ] 13 represents the bracket term in Eqs. (I-23);
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S0 we can write the equation for the rate of change of internal energy in

cylindrical coordinates as

aJ, d4E, 4K
d__Jd.__3
dt dt at

; [m(u )] %;* e, +:))r [ ]ij("i“’a) - I E,

ij

[ ]13 (v, + vJ) .

In the finite time-difference approximation to Eq. (I-24), the velocities must

)2

Z 7 (“ '4) 4(1‘ §1

1

J

be time-centered for energy conservation, as was the case in Plane coordinates.
By extending the procedure used to derive the polytropic equation of
state force, Egs. (I-23), to the "stiffened" gas equation of state, one can

derive the analogue of Eg. (I-15) in cylindrical coordinates,

2n(r +r )r

(r, - r)r. 130
Fij(r) = (-;J___L_g_ (y = 1) (3, + JJ) + afm, + mJ) [1 - —(qrﬂp—j—]

3 +ry )r:".j

2u(r + T, )r 150 ]

F&J(Z) = -—~—1;——-— (y - 1)(Ji + JJ) + a(mi + mJ) [1 -—-T_;_:TEGT___-
ij

e ST S
+ch)81'j (ui - uJ) /|Ji ¥ le(mi ¥ mJ)}.

(1-25b)
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This force function has been applied successfully to several problems, one

of which is described in Chapter 2.

G. BOUNDARY CONDITIONS

From a computational standpoint it would be perfectly reasonable to
perform a PAF calculation without boundary constraints, since the method
ig not tied to a fixed mesh system. But for the practical reasons of effi-
cient neighbor searching, teking advantage of flow symmetries and the log-
ical presentation of results, the fluid is usually bounded. In many phys-
jeal circumstances, of course, such bounding also exists.

Two types of boundary conditions have been used (sometimes in com-
bination): preseribed input, continuative output conditions for flow into

and out of a channel, and reflection from rigid walls.

1. Prescribed Input, Continuative Qutput

In the case of flow through a channel, particles are periodically
created at the input boundary with the proper mass, velocity, internal
energy, and interparticle spacing to represent the required state of the
incoming fluid. At the output boundary, particles are destroyed and
their mass and energy are subtracted from the totals for the system. The
memory storage which had been used by the destroyed particle is then made
available for new particles, so the problem can be run indefinitely.

Particle crestion and destruction actually occurs at a distance
of approximstely the search radius outside the input and output boundaries,
respectively. During the time that these particles exist outside the

system, they exert a force on their neighbors inside, but they themselves
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are not so influenced. They therefore do work on the interior particles,
80 1t is necessary (for the purpose of checking energy conservation) to
calculate the change in the energy of the system which stems from their
influence. In plane coordinates, the change in energy which results from
particle #j outside the system exerting a force on its neighbors i inside
the system is

(5 + 3 )]. (1-26)

* - +
SE = 8t Z' F, *~ —ted
Ji 2
i
But in cylindrical coordinstes & portion of the interparticle reaction is
attributable to the self-expanding force of a particle. This is not
actually work done by an externsl body on the system, so the energy change
in Eq. (I-26) must be reduced by this amount. The self-expanding energy
attributable to each of the neighbors, i, above, is given by one-half the
amount by which
-5 -3
5t [(1? +F ) (ui * ud)]
Ji iJ 2
fails to reduce to zero. Hence, by meking use of the fact that in cylin-
drical coordinates

rJFJi(r) = 'riFi.j(r)’ FJ:L(Z) = -FiJ(z),

we can write the cylindrical coordinate analogue of Eq. (I-26) as

)

(1-27)

2

o = F’tg*{[%i' M] '%C'i_;;‘l) Fya(*) (vi;




The velocities in Egs. (I~-26) and(I-27) must be time-centered in the
finite time-difference form, as was required in the previous sections on

energy conservation.

2. Rigid Walls
The problem of devising boundary conditions which accurately describe

the intersction of a fluid with a rigid wall is one which has received

extensive study. We have experimented with many different boundary treat-

ments, almost all of which work quite well in plane coordinates or in un-
obstructed flow parallel to the axis of symmetry in cylindrical coor-
dinates. The most difficult problem for all such methods involves flow
past a cylindrically symmetric obstacle in a channel,

The difficulty arises from the fact that the boundary conditions at
the obstacle cause rather large fluctuations in what should be a stagnant
region adjgcent to it. These fluctuations are compounded in cylindrical
coordinates by the presence of both very light and heavy particles at the
face of the obstacle. A light particle caught between the wa.u and several
heavy neighbors may begin to oscillate at such a rapid rate that it becomes
drained of internal energy and develops a negative (attractive) force. In
time, this particle's neighbors will also develop negative forces and the
results will soon become meaningless.

We have attempted to alleviate this tendency by developing boundary
conditions which damp particle fluctuations neaxr the wall, but in some
cases more drastic action is required. For example, calculations of flow

past a cylindrically symmetric cone were attempted using each of the
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boundary conditions described in the next two sections of this report, and
in no case could the problem be run long enough to achieve steady state.
As light particles moved up the face of the cone and encountered massive
neighbors, boundary instsbilities invariasbly developed. One vay of avoid-
ing this difficulty is to destroy the light particle before the instability
fluctuations damage the calculstions.

Any particle whose mass 1s less than some fraction, k, of the average
mass of its neighbors is destroyed, and its mass, momentum, and energy
are distributed among its neighbors. Values of k from 0.2 to 0.k have
been suitable for this purpose.

The mass of the destroyed particle is distributed among its neighbors
on the basis of interparticle distance. That is, a particular neighbor, #1,
of the light particle, #j, gets some fraction,

1y
Kig * 2
Zri
7 13

of j's mass. The new mass of particle 4 1is then

vhere the tilde indicates the quantity before distribution.

The total momentum and energy of the group of particles will then be
conserved if we compute each neighbor's new velocity and internal energy
from the formulas
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L= ;_1. [(51)2 + (vi)a] + 3, 4K {;‘1 [(53)2 + (%?j)a] + 'EJ}

- ;—ji [(v.i)2 + (vi)z].

'
|

Another procedure, described in Appendix E, nmakes use of a mass

£lux from heavy to light particles.

S Mechanical Reflection from a Wall

Two general classifications of boundary conditions, along with many
variations, have been employed: mechanical reflection of particles from
the wall and reflection by means of image particles on the opposite side
of the wall. The simplest type of mechenical reflection (from a pro-
grammer's standpoint) is to allow the particle to cross the wall, calcu-
jate its interparticle forces, its velocity, and its internal energy in
the usual manner, and then, for the purpose of moving the paxrticle, re-
verse its component of velocity mrma.l to the wall. Energy ls conserved
by this process and, since the particle will be accelerating as it
crosses the boundary, it will re-enter the system within one time cycle.
But, rather then having a dissipative effect on the fluctuations of
adjacent particles, this manner of treatment incresses those fluctua-

tions by returning the particle to the system with a higher velocity
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than that with which it left. To alleviate this situation, an attempt
was made to allow the wall to exert a force on nearby particles within
the system, thereby slowing them down before they crossed the boundary.
This, however, had the disadvantage of subjecting particles near the
boundary to continual compression, thereby raising their internal energy
to abnormally high levels.

An alternative approach toward reducing fluctuations near an obstacle
wall is to set to zero the normal component of the velocity of any par-
ticle which strikes the wall. The particle is therefore constrained to
move in the plane of the wall until it reaches the top of the obstacle.
The physical basis for this boundary condition is the fact that the nor-
mal component of velocity of a continuous fluid impinging on a rigid
wall would be zero.

But, while this approach damps out fluctuations norma.llto the wall,
it leads to severe tangential fluctuations. Since the particles at the
wall are very hot (the lost kinetic energy is transformed to internal
energy) and highly concentrated (since none can escape from the wall),
their interparticle forces become extremely large. The great accelera-
tions which result will cause particile interpenetrations unless the time
step 1is made very small.

The most successful form of mechanical reflection of particles from
& wall has been specular reflection. At the instant that a particle
strikes a wall its velocity component normal to the wall is reversed.

Therefore, there is no time lag in returning a particle to the system,
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as there was with the treatment by which a particle actually penetrated
the wall before being reflected. This greatly reduces the fluctuations
in the vicinity of the wall. Particles tend to stick to the wall with
this method, as they did in the case where the normal velocity component
was set to zero. Now, however, this is not so serious a problem, since
the particles on the wall are neither especially hot nor highly concen-

trated, as they were in that case.

4. Images
All of the forms of mechanicel reflection from a wall share one im-

portant defect: they affect particles in a way that is entirely unre-
lated to the interparticle relstionships which exist in other parts of
the computational system. Granted that rigid walls must, by definition,
present an abrupt obstruction to the flow, it is usually preferable in a
computational scheme +to meke this treatment an extension of the calcula-
tional method in the interior of the system. This can be accomplished
vith PAF by the use of self-images for particles near the boundary.

An image particle is created (see the following dilagram) for every
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particle in the system which lies within a distance of one-half the search
radius of a rigid boundary and from which & normal to that boundary can
be constructed. Notice that with this definition, it is possible for a
particle within the required distance of a wall to have no, one, or two
images. A particle at a concave boundary corner would require two

images 80 that it would be aware of both boundaries. At a convex boun-
dary corner it would be possible to create an image which is a reflection
of the particle through the point of intersection of the two boundary
lines. This was not done for the problems described in this report, but
subsequent experimentation indicates that it is desirable.

The image particle is given the reflected Properties of the corres-
ponding particle within the system. If particle i is the image of a par-
ticle j within the system, these properties can be described as follows.
Coordinates: Particle i is given the coordinates of a point which is the
same distance from the wall as J and lies on the same normal to the wall.

These coordinates can be written:

G- ;2)xj + 2Ly, + 2§2xw

x

i 1+§2 ’
2

5 =2§x3+(§ - 1)21--2;::w

i 2 ’
1T+

where { is the slope of the wall and X, is its intercept with the x axis.
Velocities: Particle i has the same component of velocity tangential to

the wall as does J, but it has a normal component which is the negative
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of j's. Relative to the coordinate axes these can be written:

(1 - ;2)u + 2§v‘j

ui 412— ’

2t (¢2 - v,

v

2 [ ]
1 1+¢
Mass: m = md.
Internal energy: Ji = Jj'

Of course, these properties apply only to straight boundaries. To devise
boundaery conditions that are appropriate to curved boundaries will require
additional thought and experimentation.

Images are created only when needed and are destroyed after each cycle
of calculstion. The fact that a particle is sufficiently close to a rigid
wall to have an image does not necessarily mean that the image will be one
of the particle's neighbors. If the particle should find N* closer nelgh-
bors, then its image will have no effect. On the other hand, it would be
possible to include among & particle's neighbors the images of other par-
ticles. TIn this case we would have to require (for energy conservation)
that an additional principle of reciprocity be adhered to, i.e., ifi
finds j's image as a neighbor, then J mst have i's image as one of its
neighbors. None of the problems described in this report imvolve such

mﬁltiple image nelighbors.

5. Conservation of Energy

Images have as their sole vurpose for existence the influence of
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other particles; hence » we neither calculate changes in their properties
not include their mass and energy in the totals for the system. Never-
theless, they behave in every way as conventional particles and, for the
purpose of confirming the presence of energy conservation near a wall, it
is convenient to consider them as such.

To demonstrate that the image method
requires no special treatment to insure
conservation, let us consider a specific

example, The accompanying figure shows
two particles, 1 and 2, and their re-

spective images, 1' and 2', across a wall

in either plane or cylindrical coordinates. Since the wall itself has

no effect on any of the calculations, we are free to look on these four
particles as an isolated region of the fluid and allow them to interact
only with one another. Total energy is conserved among these four

prarticles, as it would be among any isolated subset of particles, i.e,,

.‘?:E1 +8E2+‘5E1,+8E2,=0.

Furthermore, by symmetry, the work done on any one of the particles
during a time cycle (which equals the change in its energy during that

cycle) is equivalent to that experienced by its image; hence
SE1 +5E2 = 8E1, +8E2,-

To be consistent, the above equations require that
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5E1+5E2=O,

i.e., that the energy of the interior particles be conserved.

Because of the asymmetry of the r component of the force function
in cylindrical coordinates, it might seem that the work done on the
particle and its image would not be the same in that coordinate system.
But, in cylindrical coordinates, the actual work which a particle i does
on its neighbor j is defined (for the PAF method) to be the plane coor-

dinate work rate,

- | =
1 2 ’

less the portion

T, + T,
e - :1)
5 (Fyy + Fyy) C 5
which is attributable to the work the ring j does on itself, Thus the

actual work rate is
= ->
1, -5 . U
~(F,, - F )-C_l_l___j.) ’
2 7ij Ji 2
and this is a symmetric function.

H. PARTICLE CONFIGURATIONS

A problem was run rather early in the development of the two-
dimensional PAF technique in order to determine the equilibrium con-
figuration of a box of particles. The box was initially filled with

a random arrangement of warm particles at rest. These particles then
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began to interact and it was observed that when the initial large fluctua-
tions had subsided the particles had attained a hexagonal configuration.
This came hexsgonal array of

particles (see accompanying figure)

was observed in every problem in ° ° ° ° .
which a rectangular (or near rectan- * o—-o o
gular) configuration was subjected o ./ o \. o
to some type of deforming process. . \. ./ .

For example, as a shock moves

through a rectangular array of
perticles at rest, such a configura-

tion is attained within two or three particle spacings behind the shock.

- If the particles at rest are initially slightly displaced in some random

manner, the hexagonal array is assumed immediately behind the shock. In

this case the shock is observed to move at more nearly the theoretically

predicted speed than in the case where the particles are not subjected to
& random displacement.

The primary advantage of random particle displacement is that it
allows systems of particles to become deformed rather easily. When a
disturbance moves through a system of rectangularly arranged particles
in a direction parallel to their rows, the two-dimensional effects of the
disturbance are resisted because the particles can exert forces on one
another only along a line connecting their centers. Therefore, in almost

all two~-dimensional problems it is preferable to stagger particles
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slightly from a purely rectangular array. The only noteworthy exception
to this rule oécurs when, for illustrative purposes, one wishes to see
vhere the first slightvtwo-dimensiona.l effects become apparent (as in de-
fining the bow wave in flow past an obstacle).

Particles are generally offset as much as one-fourth the inter-
particle spacing in each of the coordinate directions. Two random numbers
between -1 and +1 are generated for each particle and the particle is then
displaced from its rectangular position by these fractions of the maximum

displacement in each of the coordinate directions.
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CHAPTER 2

TESTS OF THE METHOD

A previous report on the PAF method [I-1] included descriptions of
several tests of the method. These were simple fluid flow problems for
which analytic solutions existed. The calculations were in good agreement
with these analytic solutions,

We now describe some more complicated tests of the calculational
technique, for which analytic solutions are not available., The results
of most of these are checked against experimental results from shock tube
and wind tunnel tests, and one is compared with the results obtainegd by
another mmerical method. Several other problems, for which there are no
comparisons, are used to illustrate some of the properties and capabili-
ties of PAF calculations, The computations were pexrformed on IBM
Electronic Data Processing Machines types 7090 and 7094,

A. FLOW PAST A WEDGE

This is a study of the rate of growth of a detached bow wave pro-
duced by the bassage of a shock over g two-dimensional wedge suspended

in air. Time zero corresponds to the time of arrival of the shock at the
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apex of the wedge; we therefore begin the PAF problem with particles in
a shocked state on the left of a vertical line through that point and in
an ambient state on the right of that line. Particles move from left to
right past the wedge and exit through the contimuative right-hand boundary.
New particles, in a shocked state, enter the system through the left-hand
boundary.

For this problem the Mach number of the flow is 1.35 and the apex
angle of the wedge is 900. We use & polytropic equation of state for the
air, with specific heat ratio y = 1.4k Other input data are listed below,

where subscript 1 signifies shocked air and subscript o is ambient air.

x component of velocity (cm/usec) u, = 0.0755 u = o]
y component of velocity (em/usec) v, = 0 vy =0
particle imternal energy (102 joute) g, = 1.0403 3, = 0.3932
particle spacing in the x direction (cm) Bx, = 0.063%5 8x = 0.1243
particle spacing in the y direction (em) 8y, = 0,0635 8y, = 0.1243
particle mass (gn) m = 1.861 X 107
time step (msec) 5t = 0.1
artificial viscosity coefficient

(type I-17a force) o = 0,07

The locations of the detached bow wave at times of 18 and 46 usec
after impact are compared in Fig. I-1 with those observed by Griffith
[I-12] in a shock tube experiment. The PAF results are indicated by the
dashed lines in the figure, while the solid lines show the location of

Griffith's detached shock fronts at the two times.
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The shapes of the two curves are somewhat different at the first
Observation time, but are essentially the same at the second time, except
for the reflection on the PAF curve which was caused by interaction with
the top reflective boundary. Griffith reports, however, that his measured
shock strength of 1,35 mey be in error by as much as 5%, s0 the qualita-
tive agreement between the two curves is as much as could be expected.
This in itself is important, for it demonstrates (at least qualitatively)
that PAF calculates early bow wave development correctly.

1.5 I
1O f—
CM
0.5 -
o I
0.5 10 15
CM

Fig. I-1. & comparison of the PAF detached bow wave
positions (dasheq lines) at 18 and 46 pgec
after impact with those observed in a shock
tube experiment involving a Mach 1.35 flow
past a wedge.
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The Griffith report shows subsequent bow front positions at times up
to and including steady state, which is attained at about 500 usec.

Unfortunately, computer memory limitations restrict the PAF run to about

90 psec.

B. FLOW PAST A BLUNT CYLINDER

In contrast to the previous problem, in which we were concerned
with the ability of PAF to resolve the initial characteristics of flow
past an obstacle, we now consider a test of its steady-state predictions.

This is the study of a Mach 1.58 air flow (y = 1.4) past a blunt
axially symmetric cylinder in cylindrical coordinates. We are not con-
cerned with the time dependency of the flow in this case; hence we can
state the free-stream conditions without specifying their units. Those

conditions are:

z component of velocity u = 1.58
r component of velocity Vo = o
sound speed co = 1.0
particle spacing in the z direction 5z, = 1.0
particle spacing in the r direction Sro = 1.0
particle mass = initial radlus
time step 8t = 0.1
artificial viscosity coefficient
(type I-1Tb force) ®= 0.5

The first test of the calculations is a compé.rison of the PAF steady-

state stagnation pressure with the theoretical value. The theoretical
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value can be determined by making use of Bernoulli's law, which states

that along a streamline in steady flow, the quantity

4
y -1

%-(u2 + v2) + %

is constant. We can therefore relate conditions at the stagnation point
(u =0, v =0), which is located at the center of the cylinder face, to
conditions at a point immedistely behind the detached shock on the axis
of symmetry, because these two points lie on the streamline. Referring
to values at the stagnation point with subscript s and to the shocked

quantities with a prime, we can write this relationship as

el

Y __8
7 -1 Py

2 2 !
(u' + v*%) 4 ;7%—7 E. .

1
2 P

The stagnation density can be eliminated by means of the adiabatic equa-

tion of state,

to obtain an expression for the stagnation pressure in terms of the con-

ditions behind the detached shock,

o {lEF) et Bl e

The shock conditions can, in turn, be related to our input quan-

tities by means of the Rankine-Hugoniot relations. The theoretical value
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of the stagnation pressure, Eq. (I-28), for the present problem is
P, = 0.426. In Fig. I-2 the PAF pressures are compared with this value
for times 15 through 37.

Although the PAF pressures fluctuate a great deal, the average of
these fluctuations is in good agreement with the theoretical stagnation
pressure.

The reason for these fluctuations is that the pressure at any
instant of time is obtained by summing the forces exerted by image
particles across a small disk st the center of the cylinder at that time
and dividing this sum by the area of the disk. The number of particle
interactions sampled at a particular time is small, so the total force
varies considerably with time.

Another check on the PAF steady-state predictions can be obtained
by comparing the final PAF bow wave position yith that obtained by
Marschner [I-13] for this same problem in a hind_tunnel experiment.
Figure I-3 shows a steady-state PAF particle plot on which has been super-
imposed Marschner's steady-state detached shock position. Good agreement
is evident near the axis of symmetry where the shock is strong. In order
to provide a basis for comparison in the wéék‘shoék regioﬁ away from the
axis, the PAF particles were constrained to enter the system through the
left boundary in a linear fashion (in contrast to their usual staggered
arrangement). The point at which these lines of particles become de-
flected from their horizontal trajectories is the point of intersection

with the PAF shock front. One may verify that this shock front agrees
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Fig. I-3. The steady-state detached shock front position observed
experimentally in a Mach 1.58 flow past a blunt, axially
symmetric cylinder is plotted on a late-time PAF particle
configuration from the calculstion of the same problem.




nicely with Marschner's bow wave. Because of the weakness of the shock
in the vicinity of the reflective boundaries, there is no visible evidence
of shock reflection as there was in the previous problem involving flow

past a wedge.

C. FLOW PAST A CONE

The third and last example involving flow past an obstacle is con-
cerned with the passage of a Mach 1.41 air shock over a 75° cone. We com-
pare the steady-state pressure along the obstacle face and the final bow
wave shape with those observed experimentally by Marschner [I-13],

The free stream conditions for this problem are:

z component of velocity u = 1.41
T component of velocity vy = 0
sound speed e, = 1.0
particle spacing in the z direction azo = 0.1
prarticle spacing in the r direction 8ro = 0.1
particle mass m = initial radius
time step 5t = 0,01
artificial viscosity coefficient
(type I-17b force) w=1,0

Figure I-4 shows g comparison of the PAF pressures along the face
of the cone (the dots) with those observed by Marschner (the line),
The location on the cone face is Plotted in the nondimensional form x/s,

where x is the distance along the face of the cone measured from the nose
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Fig. I-4. A comparison of steady-state PAF pressures (the dots)
along the cone face with experimental values observed
in a Mach 1.41 flow past a 75° cone.

~59 -~




and s is the slant length of the cone from nose to shoulder. The pres-
sures are also plotted in a nondimensional form p/ps, where p is the ob-
served pressure at the point and b, is the theoretical stagnation pressure
which develops on a blunt cylinder subject to these free stream conditions.
The stagnation pressure used by Marschner is an observeqd value, whereas
that used to reduce the PAF data was calculated from Eq. (I-28),

The PAF pressures were obtained in a manner similar to those plotted
in Fig. I-2. The z components of the forces exerted by image particles
across a punctured disk of radii x/s £ 0.1 were summed, averasged over time,
and divided by the area of the pbunctured disk (this is equivalent to
dividing the total force across a segment of the cone face by the area of
the segment).

Agreement with Marschner's curve is considered to be good, although
there is less variation in PAF pressures across the cone face than was
observed in the wind tunnel experiments. Perhaps this can be attributed
to the PAF strategy (described in the discussion of boundary conditions)
of destroying light particles as they move up the cone face and distribu-
ting their mass, momentum, and energy among their heavier neighbors. As
& result one obtains boorer resolution, and perhaps poorer agreement with
experiment, in the vicinity of the shoulder of the cone than in the region
near the nose. The 800d agreement near the nose conforms with the results
obtained in the two previous examples of flow past an obstacle.

Figure I-5 shows a Particle plot at a late time on which has been

superimposed Marschner's steady-state bow wave position. Because of the
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Fig. I-5. A late-time PAF particle plot on which has been super-
imposed Marschner's steady-state bow wave position for
the same experiment described in the caption for Fig. I-h,
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weakness of the shock it is difficult to prinpoint the PAF shock front,
but it seems to agree quite well with Marschner's, at least in the bottom
balf of the mesh., The method of locating the shock front in the weak
shock region by observing the deflection of horizontal lines of particles,
as was done in the case of flow past a blunt cylinder, could not be used
here. We have not as yet been able to avoid boundary instabilities when

calculating flow past a cone with unstaggered particles,

D. FLOW THROUGH A BENT CHANNEL

The three previous examples have dealt with flow past a symmetric
obstacle in a straight channel, In each such case a single detached
shock developed and moved upstream from the obstacle, eventually reaching
& steady-state bow wave Pposition.

We now consider the more complicated flow through a channel which
contains two 90° bends. A plane shock enters the channel ang interacts
with the channel walls, producing numerous reflected shocks., The problem
is to calculate correctly the flow through the channel while g uniform
inflow is sustained at the mouth,

These experiments were prompted by shock tube studies performed by
H. Reichenbach and his associates at the Ernst-Mach Institute, Freiburg,
Germany. In Fig. I-6 a series of 12 photographs trace the flow through
the channel for one such shock tube experiment. The very complicated
structure of the flow is evident from these Pictures which are spaced at
40 usec intervals. we are grateful to Dr. Reichenbach for his permission
to use both these pictures ang his detailed measurements, with which we

compare our results.
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This series of photographs, spaced at 4O usec intervals,
traces the flow observed in a channel when a uniform

inflow is sustained at the mouth. The pictures were ob-
tained from a shock tube experiment performed at the

Ernst-Mach Institute.
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Fig. I-6. (continued)



The experiment with which we will compare was performed in the same

manner as that illustrated in Fig. I-6 except that a deposit plete was

placed at the mouth of the channel (see accompanying diagram) in order to
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obtain a controlled uniform pulse. The incoming shock had an overpressure

of 2.29 relstive to the ambient air initially contained in the 2 cm wide

chennel. This fact can be translated into the following initial data for

the PAF problem:

x component of velocity (em/nsec) u, = 0.0218
y component of velocity (em/psec) v, =0
particle internal energy (10"2 joule) I, = 3,623%
particle spacing in the x direction (em) ox, = 0.25
particle spacing in the y airection (cm) 8y1 = 0.25
particle mass (gn) m = 1.339 X 10-4
time step (psec) 5t = 1.0
artificial viscosity coefficient

(type I-1Tb force) ® = 0.1
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where, as before, subscript 1 is shocked alr and subscript o is ambient
air. The calculations are prerformed in a Cartesian coordinate system.

In Fig. I-7 a comparison is made between the PAF pressures recorded
at the two observing points in the channel (shown in the diagram on the
previous page) with average curves (the dashed lines) drawn through the
experimental measurements at these two points. Dr. Reichenbach warns
us that the relationship between his measurements and the pressure is
not strictly linear, although he points out that the deviation from lin-
earity is not very great. The comparison with the PAF pressures can
therefore be evaluated only from a qualitative standpoint.

Nevertheless, the agreement between these resolutions of a very com=-
Plicated flow structure is remarkable, The shock front arrival times at
observing point II (at the end of the channel) are almost identical and
the magnitudes of the pressure Jumps at points I and IT are in good agree-
ment. Furthermore, the major fluctuations in pressure after the initial

Jumps compare quite nicely.

E. COLIAPSE OF A SPHFRICAL SHELL

We do not attempt to Justify the development of the PAF method on
the basis of competition with the mumerical methods already in existence.
Several of these have been carried to a high degree of sophistication
and, when applied to problems for which they are well suited, may give
results superior to those which could be obtained with PAF,

Rather, the strength of the PAF technique lies in its ability to

resolve problems which could not be handled by other methods or which
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Two comparisons between PAF pressures (s01id lines) and
experimental measurements (dashed lines) from the problem
involving flow through a bent channel. The top plot
shows the comparison at measuring point I near the mouth
and the bottom plot at measuring point II at the end of
the channel.
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could be attempted only with great difficulty. Such problems fall into
two categories: those involving curved or otherwise complicated bound-
aries and those whose changing geometry hampers any type of mesh resolu-
tion. The previous example, involving flow through a bent channel, is
one which would be extremely difficult to solve by most other mmerical
methods because of the complicated boundary. If the bends had been
curved rather than at right angles, 1t is doubtful that any method other
than PAF could be applied.

An example of the second category of problems is the calculation of
the collapse of a thin spherical shell of material to the shape of a ball.
This type of problem does not lend itself to easy solution for any type
of calculational method which is tied to a mesh, whether the mesh is fixed
in space or moves with the fluid. The primary difficulty encountered by
the fixed cell schemes in calculating such s collpase is one of spatial
resolution. To cover the entire region with a mesh that is fine enough
to resolve all the details of t he flow would require a. storage capability
which exceeds that of even the largest computers.

For the methods whose mesh moves with the fluid, this is no problem.
Instead, the problem begins when the shell approaches the final stages of
its collapse. Then, cells which were roughly square initially become so
elongated and twisted that accurate calculations can no longer be made.,
The life of the problem can be prolonged by rezoning distorted regions of
the mesh as needed, but in no way can the broblem be carried to completion,
To do this would require that there be interactions between cells which
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form opposite sides of the shell and, in these methods, interactions are
restricted to cells that were originally contiguous.

To evaluate the sbility of PAF to calculate such a collapse, &
rather simple test was prepared. A spherical shell of cold particles was
given a velocity of uniform magnitude toward the center of the sphere.
The material had a polytropic equation of state (with 7 = 4) so, with zero
jnternal energy, only dissipative forces were in effect initially. These,
it was hoped, would remain small throughout the early stages of the prob-
lem so that the collapse could pe mainteined without the aésistance of an
externsl driving force (for which there was 1O provision in the co@e).

The problem was ca.lcu]ated'in cylindrical coordinates in order to
take advantage of the cylindrical symmetry of the shell, although polar
coordinates were used in the initial arrangement of the particles. They
were located a.iong radial lines from the center of the sphere* and then
displaced slightly from their original positions. Other details of the

setup are listed below:

internal radius of the shell Ro = 20.0
particle spacing in the R direction &R = 0.56
particle spacing in the ¢ direction 86 = 0,026 = 755
z component of velocity u = ~-cos 0

r component of velocity v=-sing@

*

To differentiate between radial distance as measured from the center of
the sphere and that measured from the axis of cylindrical symmetry, we
refer to the former as R, and to the latter as x.
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particle mass m

(1]

Product of initial

radii, rR
particle internsal energy J=0
time step 5t = 0.1
artificial viscosity coefficient
(type I-17c force) ®=1,0

The left-hand series of pictures in Fig. I-8 show particle configura-
tions for this problem at two time unit intervals, from time zero until
collapse. The calculation proceeded without difficulty, although it was
necessary to reduce the time step from 0.1 to 0.0125 during the last part
of the problem when the interparticle spacing was small,

The long black specks which appear in some of the lﬁst pictures
represent particles whose internal energy has gone negative. They lie
along the edges of the shell and have been cooled by the rarefactions
which are working their way into the material. It is apparent that these
particles do not attain large negative internal energies, for they do no
damege to the calculations and in subsequent pictures are positive again.

The pictures seem to indicate that the shell retains its spherical
symmetry very nicely throughout the collapse., This ma;’ be confirmed by a
study of the kinetic energy history of the problem. In spherically sym-
metric shell motion the r and z components of kinetic energy can be ex-

pressed as

© R 2
K, = f f 2 (‘21— sin® e) (2@% sin ¢ dr de),
0 "R
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These two series of particle configurations, shown at two
time unit intervals and beginning at time zero, trace the
collapse of a thin spherical shell of material to a ball.
The left-hand series was obtained from & problem in which
a polytropic equation of state was used, and the right-
band series from one in which a "otiffened” gas equation
of state was used.
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One might therefore choose the function (K, - 2Kz)/ (x, + 2K ) as an appro-

so that

ﬁ'NH

priate measure of the sphericity of the collapse; the more nearly this
expression approaches ze€ro, the greater the sphericity. These values
are listed at two time unit intervals for this problem in the second
colum of Teble I-2. Very good sphericity ig maintained until a time of
12, at which time the decelerating force is starting to become important.
This leads to increased fluctuation and, hence, decreased sphericity in
the velocity field.

A logarithmic plot of the total internal energy of the system as a
function of time can be seen in Fig. I-9.

The problem was also calculated by PAF using a force function derived
from a "stiffened” gas equation of state [see Egs. (I-25)]. Initial con-
ditions were exactly the same as those used in the first problem, p. 69,
except for the additional specifications of pormal density and the

coefficient of the "stiffening" term, which were

po = 110003,
0.0676.




TABIE I-2

A MEASURE OF THE SPHERICITY OF TWO FROBIEMS
WHICH DEPICT THE COLIAPSE OF A SPHERICAL

SHELL OF MATERTAL

r 2Kz

Sphericity Tk
Equation of State

Time Polytropic Stiffened Gas
0 0 (o}

2 0.0009 0.0009
4 0.0018 0.0036
6 0.0018 0.0027
8 0 0.0018
10 -0,0028 -0.0056
12 ~0.0134 =0,0203
14 0.0125 -0,2191
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A logaritimic plot of total internal energy versus time
for two collapsing shell problems, one for which the
interparticle force function was derived from a polv-
tropic equation of state (x) and the other for which it
corresponds to a "stiffened” gas equation of state (o).
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The normal density was chosen equal to the average initial density of
the shell and is approximately that of silver. The coefficient, which
is the square of the sound speed under normal conditions, is one which
would be appropriate for a silver shell.,

Before discussing the results of this run it would, perhaps, be
instructive to point out one limitation of this force function, It is
possible to have attractive interparticle forces with this equation of
state whenever the interparticle spacing is greater than that appropriate
for normal density material. While very small forces of this type would
be acceptable for metals, they should be limited in magnitude by the ten-
sile strength of the material. No such cutoff has as Yet been included
in our calculations so that the only limit on attractive torces in this
problem is that provided by the maximm imterparticle search radius,

A study of the particle configurations for this problem, which are
shown in the right-hand series of Fig. I-8, and a comparison with the
configurations from the previous problem on the left will demonstrate
some noticeable differences which arise as a result of this added temrm
in the force function. In the plot at time 2, several particles with
negative internal eénergy are observed, where none are bresent in the
left-hand plot. These negative internal energies develop when the cold,
initially staggered particles rearra.ﬁge themselves in an attempt to
attain a more uniform interparticle spacing. Once this has been accom-
Plished (about time 4), negative internal energies seem to be associated

with only the rarefied regions along the edges of the shell, as they




were in the previous problem.

Another result of this early rearrangement of particles in the
second problem is a much more rapid growth of interparticle dissipative
forces than was observed in the first problem. This causes an acceler-
ated growth in the internal energy of the system (as can be seen in
Fig. I-9), which, in turn, leads to an increase in the nondissipative

forces.

When one couples these increased interparticle forces with the re-
sistance to compression offered by the stiffening term, it is not hard
to understand the much greater thickening of the shell in the right-
hand series of pictures than in the left-hand series. As a consequence
of this thickening, the motion of the interior of the shell toward the
center is accelerated, so that f£inal collapse occurs about one time unit
sooner. 1In the final picture in these series the shell on the right is
beginning to expand while the one on the left has just reached final
collapse.

Because the shell on the right is undergoing expansion at time 1k,
the sphericity of its velocity field has degenerated, as can be seen in
Table I-2. Up to that time its sphericity was comparative to that of
the shell with the polytropic equation of state, although slightly
poorer as a result of increased interparticle activity.

One conciusion which can be drawn from these two collapsing shell
examples is that such calculations can be made with PAF without appre-

ciable difficulty. With the addition of an external drawing force to




the PAF calculations there would seem to be no reason why truly practical
problems of this type could not be handled.

The second example also demonstrates that force functions other than
those derived from a polytropic equation of state can be applied effec-
tively with the PAF method. The particular function used, however, re-
quires some modification to account for the limited tensile strength of

the material.

F. IMPACT OF A BLUNT NOSED CYLINDER ON A THICK PLATE

In the examples of flow past a wedge and flow through a bent channel,
we dealt with interactions between fluids in shocked and unshocked states.
Satisfactory results were obtained, indicating that the PAF method encoun-
ters no serious difficulty in calculating interactions between particles
with markedly different properties. In both of these cases, however, the
shock strength was rather moderste. We now wish to consider a test of
the method in which the material has been subjected to a shock of infi-
nite strength.

A cylindrical projectile of cold material strikes a cold target
plate, producing shocks which proceed into the projectile and the target
at the same velocity relative to the interface. We wish to check the
accuracy of the shock properties and also verify that no calculational
difficulties arise at the interface.

Both materials are represented by a polytropic equation of state
with y = 4. The other starting data are summarized below, where sub-

script 1 signifies shocked material and subseript o unshocked material.
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z component of velocity

F
"
e
I
o

o

r component of velocity v, = 0 v, = 0
particle internal energy J1 =0 Jo =0
particle spacing in the z direction 6z1 =1 Szo =1
particle épacing in the r direction Sr1 =1 Sro =1
particle mass m = initial radius

time step 5t = 0.05

artificial viscosity coefficient
(type I-1Tc force) ®=1

The initial particle configuration can be seen in the top plot in Fig.
I-10.

At early times the two shocks produced by the impact are essentially
one dimensional, so their properties can be calculated from simple shock

theory. The magnitude of the shock velocity relative to the interface is

given by
v, = <;ﬁ§—l (velocity of interface)
= 2,
n
The mass of material swept up by the ghocks during one time unit is

M

2
onp(projectile radius) v

125.

]

The specific internal energy is

2
1= %(interface velocity) ,
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Fig. I-10. PAF particle configurations from the calculation of the
impact of a blunt cylinder on a thick Plate at initial
time (top) and at times 10, 15, and 20. On the three
bottom plots theré have been superimposed the shock
front, the material interface, and the cylinder outline
as calculated by PIC,
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so that during the one-dimensional phase internal energy is produced at

the rate

o]

2 - MI = 15.625. (1-29)

[=1]

We merely state, without 11lustration, that the early time shock
velocities from the PAF calculation are in very good agreement with the
above prediction, and proceed with an evaluation of late time results.

In the two-dimensional flow regime we have no simple theory with
wvhich to make comparisons. Instead, we compare our results with those ob-
tained using another numerical technique, the particle-in-Cell (PIC) method
[I-7]. Admittedly, this makes the evaluation of results somewhat less
definitive than would be the case if we used an actual physical experiment
for a standard. To the extent that the two methods agree, however, we may
draw confidence and in regions of disagreement we can seek explanations.

The initial conditions for the PIC problem were the same as the PAF
conditions, except that they were expressed in terms of the PIC model. A
comparison between the late time geometries of the flow as produced by the
two calculations can be seen in the bottom three plots of Fig. I-10.

These show PAF particle configurations at times of 10, 15, and 20, on
which have been superimposed the front of the shock which is proceeding
into the target plate, the material interface, and the outline of the
projectile as they were observed from the PIC particle plots.

The excellent agreemeﬁt with regard to the position of the shock

front indicates that both methods are probably calculating at least the
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gross features of the discontinuity correctly. There is some disagree-
ment in the position of the interface and there is reason to believe that
part of the blame can be laid to each method. Because of the more random
nature of the PAF particle movements, one expects (and sees) a less well
defined interface from that method; this could probably be improved with
increased resolution. On the other hand, a detailed examination of the
PIC quantities indicates that there exist rather large fluctuations in
density and internal energy in the vicinity of the interface vhich re-
sult from the manner in which internal energy is distributed in mixed
cells. Some of the disagreement may be caused by this difficulty. The
outline of the projectile agrees quite well, although there is a minor
discrepancy in the low density crater region.

In Fig., I-11 we gee a comparison between the internal energy his-
tories of the PIC and the PAF versions. fThe figure also includes g plot
of the one-dimensional internal energy rise rate, Eq. (I-29), with which
they both agree nicely at early times. The two methods are in excellent
agreement up to a time of about 10, after which they diverge; the PIC
profile attains a more gentle slope, while the PAF method continues the
rapid rise,

This disagreement is somewhat puzzling, in view of the fact that the
outline of the shocked region agrees so nicely at late times. One might
suppose that the depressed internal €nergy curve of the PIC method re-
sults from greater velocity fluctuations for that method, but this con-

clusion is not borne out by detailed studies of the data. A calculation
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of the variance of velocity magnitude for sample regions of the fiuid in-
dicates that the two methods experience about the same amount of velocity
fluctuations.

The divergence of internal energy growth rates persists even when
the problem is recalculated with different values for the time step or
the viscosity coefficient or with increased resolution. This would indi-
cate that the discrepancy represents an inherent difference between the

two techniques, but which is more nearly correct is difficult to 8aY.




CHAPTER 3

THE FUTURE DEVELOPMENT OF PAF

The development of a mmerical model of a complicated physical
system generally proceeds through several distinet stages ofievolution.
First, a computer'code embracing the basic concepts of the method in the
simplest form in which they can be expressed (usually a one-dimensional
coordinate system, if applicable) ig written and tested against wncompli-
cated problems for which easily verified solutions exist. This stage of
the development often involves a considerable amount of experimentation
with mesh geometries, boundary conditions, and the form of the difference
equations.

If the results justify it, the technique is then extended to a
more complicated frame of reference and applied to more difficult prob-
lems. Such an extension often introduces a host of new problems for the
representation and may even require some further refinements in the basic
formuilation., Depending upon the amount of success attained in these more
difficult problems, an evaluation can be made of the range of applicability
for the method and the avenues in which further development might be

channeled.
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Practical applications of the method to problems of immediate
interest begin at this stage with the development of a working code which
is designed for a specific class of problems. At the same time, devel-
opmental work continues, extending the method to more complicated calcula-
tional regimes.

The evolution of the PAF method has followed this pattern very
closely. This report, in fact, marks the culmination of the second stage
of development and we are in the brocess of writing a working code to be
applied to seversl hydrodynamic problems for which the method seems ideally

suited (see p. 66), Simultaneously, plans are being made to extend the

method in order to include the calculation of the interaction between
materials with different equations of state.
The remainder of this chapter is concerned with g discussion of our

future plans.

A. THE NEW CODE

The PAF developmental work has often been severely hampered by insuf-
ficient particle resolution. For example, the problem of flow past a
wedge, which is described in Chapter 2 » was halted far short of steady
state because there was no longer any machine storage available to accommo-
date new particles entering the system. Other problems, particularly those
involving flow past blunt obstacles » were carried to completion only by
employing the minimm of resolution,

The reason for this difficulty is that PAF requires a large amount

of machine storage per particle. Not only must we store the quantities
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needed to describe the state of each particle, such as mass, coordinate
components, the present and advanced values of the velocity components,
and the present and advanced values of the internal energy, but we must
also keep track of the interparticle relationships. For each particle,
space is set aside to list up to four neighbors and the interparticle
forces with these neighbors. Also storage is required to accommodate

the cellular mesh which is used in the neighbor search routine.

We have attempted to minimize this problem by the use of revolving
storage whenever possible. geveral quantities which are not being used
during the same phase of the calculation and which must be recomputed
each cycle share the same memory regions. Als‘o, the storage required
for interparticle forces is kept at the lowest possible level by storing
only the kernel of the force function [the part which is common to Fi;](x)’
F 3 i(x) ) Fy j(y) , and Fji(y)] and by recomputing the additional factors
whenever necessary. Even with these economies, however, a minimm of
15 memory words per particle is required for PAFA calculations.

With this storage limitation it has become necessary to graduate
to a calculating machine with a larger memotry capacity in order to be
able to apply the method accurately to a variely of problems. The new
PAF code is being written for the IBM 7030 machine which has a fast
memory capacity of 98,000 words. This added facility will permit us to
calculate with as many as 5000 particles, which shbuld be sufficient
for the problems we now have in mind.

In addition to increased resolution, other improvements are
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expected from the new code, The facilities for data presentation will

certainly be expanded. One such addition will be streamline plots.
These should not only be invaluable for illustrative purposes but also
as a diagnostic tool. Other features which are under consideration in-
clude moving pictures of particle configurationé, graphs of functionals,
such as pressure, density, and internal energy, and listings of local
variables, averaged over small regions of space. At the time of this
writing, several of these have already been tested and found to be ex-

tremely useful.

B. A REVISED FORM OF THE ENERGY EQUATION

Another modification to be included in the new code, this time of
a computational nature, has to do with the calculation of internal energy
change. The equation which governs this change has been rewritten in a
form which is designed to eliminate negative internal energies,

In some of the examples described in Chapter 2, a few particles
have developed negative internal energies; usually these were particles
that were located along the edge of an unconfined fluid. These negative
values were tolerated because the particles were either isolated, and
therefore had little or no effect on the rest of the system, or else
they were only slightly (and temporarily) negative, and again had
little effect on the total calculation. No Physical defense for negative
internal energy is tenable, however, and from a calculational standpoint
it can do great harm because it leads to attractive interparticle forces

for which there is no cutoff.
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Tn the present code the change in internal energy which results from
an interparticle encounter is shared equally by the two paxrticles. (In
cylindrical coordinates this is only approximately true.) The magnitude
of the change is therefore the same for the two particles but the percent-
age change may be quite different. One particle's internal energy might
even go from a positive to a negative value while its neighbor's was
altered only slightly.

The method would be‘a better model of true physical changes if the
varistion of a particle's internal energy was more strongly dependent
upon its magnitude. The purpose of the calculational change we now de-
seribe is to introduce this dependency‘into the energy equation.

To accomplish this in the plane coordinate version we rewrite
Eq. (I-6) in the form

aJ *
J - E 1 D -
& - Y3 i Iy *+ Iy [Fij (4 - ud)]' (1-20)

A criterion for avoiding negative internal energies can quite easily be

-
demonstrated for the case where Fij is the interparticle force function
associated with a polytropic equation of state. To see this we write

Eq. (I-30) in difference form,

87, * 1
D 7 [ g o
J i rij

where we héve neglected the dissipative terms, whose only effect can be
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* n
to increase J?. A sufficient condition for insuring that SJJ/J? <1
is then

[P

1
<
%
O in (y - 1)n

This criterion is not violently restrictive, but is comparable to re-
strictions already required for accuracy,

Energy conservation is not hampered by this modification of the in-
ternal energy equation. To demonstrate this we begin by summing Eq.

(I-30) over all the particles in the system.

iij_ * - ,J.]' = - Y ]
Z T c Z Z K [Fij'(ui - ) |. (1-32)
3 :

The sum is, of course, independent of the order of swmation, so that we

may rewrite the equation

e S
JZdt =;jz T+, Fi;j'(ui'uj)’
* J .
=ZZ T [Fji'(a
ji 03

* g
_ § § i i
) Ji + Iy [Fij (d - uj)]’
i1

*The treatment of the dissipative term in the force function remains
unchanged from Chapter 1. Because of this difference in treatment,
the kernels of the dissipative and nondissipative parts of the force
function must be stored separately.

o
I
£
| S
e
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-
where the last expression is possible because Fij = -F.:'l 5 Combining

this expression with Eq. (I-32), we find that

in which form the summation is now jdentical with that obtained from our
original conservative equation [see Eq. (I-6)]. Conservation is assured
in the finite difference form of the equations if, as before, the veloc-
ities are evaluated at time t = (n + 1) st.

A similar treatment of the cylindrical coordinate equations does not,
however, produce energy conservation. In that coordinate system the analo-

gous equation for the change in internal energy would be

aJ * -
- R B e (i ) -
E_E-Yi— JJZ Jj_ n Jj [Fij (ui - uj) + > C‘——I',—"j"‘]) Fij(r)(vi + Vj)]- (1 33)

When we sum this change over all of the particles in the system and add
to it the total change in kinetic energy, we find, after considerable

simplification, that the total energy change fails to equal zero by an

2.1 7 T (ED) G e -l

J 1 J

amount

To correct for this discrepancy and insure conservation, we therefore re-

write Eq. (I-33) in the form
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Once again, this conservation carries through to the difference equations

(T-3k)

if the velocities are time-centereqd.

At the time that this report was written several tests of the new
code had been made and these preliminary results indicated that the re-
vised internal energy calculation was Performing satisfactorily. In com-
parison with runs performed with the earlier version of the code, it was
apparent that the large scale features of the calculation were essentially
unaltered, but the absence of negative internal energies where they had
been present before testified to the effectiveness of the new technique.
Tt remains to be seen whether this revised caleulation will obviate the
particle destruction brocedure which had been necessary in order to avoigd
boundary instabilities in certain cylindrically symmetric flow Problems

(see pp. 41, 4o).

C. MUITI-MATERIAL PAF

The new PAF code is a one-material brogram, as is the one described
in this report. Plans exist, however, to extend the method to include
interactions between materials with different equations of state.

Fundamental to these Plans is the concept of a force function between

particles of unlike kinds. In the absence of & correspondence theory
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(such as that described in Ref. I-2) for this type of interaction, we de-
rive the interparticle force function on the basis of preserving fluid
equilibrium. In particular we require that the average pressure be con-

stant on either side of a material interface in a fluid in equilibrium.

1. Plane Coordinates
[ ) ) ) X X X
For simplicity, let us as- |
sume that the particles which [ ) ° L | X X X
represent this fluid are arranged l
o o o X X X
in a square array (see accompany- |
ing diagram)and that the coordi- INTERFACE

nate system is Cartesian. The derived conditions should +hen be necessary,
but perhaps not sufficient, for general equilibrium in a plane coordinate
system. .

The material to the left of the interface we shall call dot material
and that on the right x material. The interparticle spacing is the same
for both materials; hence, the dot and x particles must have different
masses if their densities are to be different. Iikewise there are two

distinct interparticle force functions,

- -
F. = sijf.(rij’Ji’Jj)’
id
pd -
= f

for the two fluids. At the interface, equilibrium requires that these

two be equal:




f_(rij, 129 ) = £ (r Iy Iy ) = £ (r 1073 )e (1-35a)

iJ

If the two fluids were polytropic, this equation would be written

(r, =13 (o, = 1),
1J 13
For {x we try an expression of the form

J  + qx
£ ( ry 59 s J)-)( 5= )

13

n

= f (rIJ,Ji,JJ). (I-35p)

X

and solve for a value of 2\ which is consistent with the equation above,

Thus -1
J > J
(r ~1)g =af <:x- 1> J ,
° . 2 j
2(7. - 1)(7x -1)
) 7. + 73( -

The interparticle force function between two fluids with polytropic equa-

tions of state can ﬁherefore be written

- [(71 - Dy, - (g + JJ)]
0 .

Fig = E;J 2 2)riJ

Notice that when i ang J are the same material this expression reduces to
the usual one-material force function.

If the two fluids had stiffened gas equations of state we could write

Egs. (I-35) as

9l




2 2
(7. 3 1)J. + m.a. <5 - po.r11> - (7x i 1)Jx + mxax <} - poxrii>
r m

Ti3 Ti3 m, 13 Ti3

3 x(?. + J%) . T .
Qrij Bx

Using the same value of ) as was used for the polytropic equation of

state, we can reduce this equation to

m.a.<1 -9—'——-‘1> = m.a ( 8951-‘?-'-&)

The only symmetric value for I' is the average of the two terms

2
r = ne, OBy [1 - (a.po. * axpox) ij
= 2 ma +mea ¢

o o X X

The force function appropriate for two unlike stiffened gases can there-

fore be written as

-t [t

(e[ - e Seud)y

ma + m
i JJ

2. Cylindrical Coordinates

Consider the problem of maintaining equilibrium among & square array

of particles in a cylindrical coordinate calculational system., If we

confine our attention to the 2 component of the interparticle




relationships, we see that the problem is entirely unchanged from the
Plane coordinate case. Therefore » ‘the plane coordinate form of the
interparticle force function will apply as well to the z component in
cylindrical coordinates.

The r component of this interparticle force requireé additional con-
slderation, however, because of its asymmetry., Wwe begin by recalling
that the one-material form of this force was derived subject to the con-
straint that an unconfined fluid of uniform density and internal energy
must have the same rate of expansion in the positive and negative radial

directions. As a consequence of this demand, a confined fluig in equili-

brium which is subject to the proper boundary conditions must remain
forever in equilibrium., We wish now to extend this requirement to the
case where more than one fluid is so confined., For simplicity of calcula-

tion we again specify that the Particles be arranged in g square array.

Consider a radial line of these X 4
particles (see accompanying diagram), X
numbered 1, 2, 3, and 4, which crosses —_— ._3 INTERFACE
this interface. Particles 1 and 2 are .2
dot material, 3 and 4 are x material. °

In the one-material case, when the den-

sity and specific internal eénergy were uniform, it turned out that the
force on a particle from its neighbor above was exactly balanced by the
force exerted by its neighbor below. We now require that this hold in

the vicinity of an interface, so that
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F 5= -th Fap = “F e (1-36)

The one-msterial analogy is carried even further with the requirement that

F25 == F32o (1‘57)

o

If a force function can be discovered which satisfies conditions (1-36)
and (I-37), then equilibrium will be assured, for the pressure will be
uniform in the vicinity of the interface.

If the two fluids have polytropic equations of state, condition
(1-36) can be expressed

> (7x - 1)r3(J3 + Jh) (7x -1)rnoI

o 3% X A
F23 - Sr(r3 + rh) r= or
> (y, -V p I o
F52 == br Ty

where we have made use of the fact thet in a uniform density fluid the
mass is proportional to the radius. We now use condition (1-37) to deter-

mine the form of the interparticle force function:

- (y. - 1rpmI (y -1rmI [J+J ],\
_ X 33X X5 _ . 3 e e O o 2
F23- 5 T = 5 r ’)..r3 - r2+r3 T,

r(y - 1) +r2(7x-1) :

3




Generalizing, now, to any array of particles we write the interparticle

force function as

(r, -z (r, = 1)y, - 1)r (3, +4d,)
F, (r) = —d_1 i J i
ig'* Tsj .rj(7i -1) + 1'1(7J - 1)] Tij
F(ﬂ=<%-zg-ui-nod-n]wj+ﬁ).
iJ 7y * 7j - 2 T

ij -

13

The uniformity of pressure along the radial line may now be veri-
fied by applying either of the relations from conditions (I-36). For

example,

- _ [ (7. - 1)(7x - 1)r3 ] Egj + Jé) A _ (7x - 1)r3mxIx ~ -

F r r = -F
23 r3(7. - 1) + r2(7x - 1) dr dr 43

simplifies to

so the same pressure exists on either side of the interface.

Applying the same technique to two fluids with "stiffened" gas equa-
tions of state in cylindrical coordinates » one can obtain an interparticle
force function with components

(o) - (r - x,) {:[(7i - Dy - 1, - 17] raj + Ji)]

rij r,j(7i - 1) + :ri()"j 1‘13

(m,a, +m.a )r 21tr? (r.p a, +1.p0 .a,)
+[ii 333][1_ 13730373 1011:,}’
(1:"j + ri)rij (miai + mJaJ)

-98-




Fij(z) _ (2, ;izi) {[(717; 1)(7?--21)] (er;.:i>

2

, [(miai + mjaj)] [1 ) aﬂrij(rjpojaj + ripoiai) :I } .
21'5.'j (mia.i + mjaj)

Tt can be verified that, when particles i and J hé.vé the same equation of

state, these expressions are identical with Egs. (I-25).

Notice that the kernels of these cylindrical coordinate multi-
material force functions are not identical for the r and z components, as
they were in the single material functions. As a result, the multi-
material PAF code will require twice as much memory for the storage of

interparticle forces as does the present code.




APPENDIX A

VIRIAL APPROACH TO CORRESPONDENCE THEORY

Neglecting the dissipative forces, we may write for the PAF particle
dynamics the equations

- *
du

-3
m a‘ti = Z 8 a%15
1

Suppose that the particles are confined within a rigid circular (or spher-
ical) region by means of images beyond a wall of radius R. The above

equation can be summed over the particles within R and rearranged as
follows:

*
d = = =2 1 2 _ =
Z a (%) - Z " T Z Z & - B,

3,int 3,int j,all 1
* -
- Z Z X581 5T1g
Jsext 1

=100~




The sum over J,int means the sum over particles within R, while the
sum over j,ext means the sum over the exterior images only. Summing over
j,all includes both.

Consider now the long time average of this equation. The first term
vanishes, since mji?'j-ﬁj is bounded for these confined particles. The
second term vanishes because the PAF correspondence is supposed to force

all particle kinetic energy to be macroscopic only. Thus, we obtain
] * * i
- < > o= < - >
2 Z Z %1571 Z Z ST
Jyall i J,ext i

where < > means the appropriate long time average. For the exterior

-
8

particles, i’j' =R + ¢,, where €_ 1s the distance out to the image from

iJ J J
the wall. In n dimensions, f; ,j/ &% 15 the surface pressure, where s is
the mean interparticle spacing. Thus, with the assumption of strong corre-

lation, the virial equation becomes
1 * _ sy n-1 (m
3 (NN + Ne)sf(s) = N (R + 5)s p<-;£> ,

where Ni is the mmber of interior particles, Ne is the mumber of exterior
*
images, N 1is the number of neighbors per particle, and p(mp) is the pres-

sure as a function of mass density. It can be shown that NeR = nNis, so

O R 2

that
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Thus, in order to have a correspondence equation which is independent of
¥

Ni/Ne » it is necessary that N = 2n, proving, therefore, the contention

that the mumber of neighbors per particle must be twice the mumber of

space dimensions. We also obtain
n-1 /m
f(s) = s p(-s-5> ’

which is the same as the result obtained from the Iiouville correspon=

dence theory — see, for example, Eq. (I-14).
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APPENDIX B

THEORY OF CORRESPONDENCE FOR CYLINDRICAL COORDINATES

We wish to extend the correspondence theory to show that three-
dimensional problems with cylindrical symmetry can be approximated by
a two-dimensional PAF model. In other words, we wish to use a two-
dimensional array of particles and forces between them to represent a
three-dimensional array of particles and corresponding forces.

One of the restrictions we should like to make is that the force
between two particles be dependent only on the plane coordinates of the
particles and the usual variables @ and a (Notation throughout this
appendix is the same as that in Ref, I-2.)

One possible scheme suggests itself immediately. We could con-
sider each two-dimensional particle as the representative of a ring of
particles. Then the force between two such representatives would be Just
the average of the actual force over the entire ring. Unfortunately such
an association of the two-dimensional array of particles with rings also
means that a "self-force" would be imposed on each member Of the array

because of the other particles in the ring it represents. This
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self-force leads to considerable trouble, as will be seen below. However,
if the initial distribution were such that this self-force could be
ignored, this approach is partially successful.

A slight alteration of this technique is to assume that the initial
distribution is such that, while it is not formed of rings, little error
is involved in computing interparticle forces by means of an average.
However, it seems difficult to Justify this procedure on anything other
than an intuitive basis.

It should be noted that it is necessary to assume that variables
such as p,, @ and E;do not change with ¢ (where r, 6, and z are cylindrical
coordinates and the z axis is the axis of symmetry). These assumptions
are justified by cylindrical symmetry.

We begin with N particles in a three-~dimensional array whose motion

is governed by a distribution function z (rj, J,@ .»t), where j runs from
1 to N and r.j is the ordinary three-dimensional position vector.

We first integrate out eJ for each J to obtain a new distribution

function
2n
gN(RJ’uJ’QJ’t) = r '..r f f ZN d9 dG

where RJ (rj,zj) is the ordinary two-dimensional position vector.
This means, of course, that we are considering each particle only
in terms of its r and z coordinates. As in the previous correspondence

[I-2], we conclude that

=10k~




d q 4 q LR K J q L N ]
°O=& f Ly ORycer Ry duy do; *** Aoy
v

for a generalized volume V whose boundary is not crossed by particle tra-

jectories. This leads to the Liouville equation

€Ky X 1'1’
3 * Z [V%'@N&'El i <§N t> (‘N dt)]’o‘

3=
; (B"1)
If o = .If.rN,this means that
> 05 )+ 2 (o
SE‘+§:[ <‘“th +§gat +v3'<"‘Nat>+§55 ‘“Nat)]=°ZB2)
J -

Assuming that the particles are jntrinsically identical (i.e., have no
identifying property such as mass which they carry along in space), then

the reduction shown on p. 13 of Ref. I-2 is valid and the result is

dw w, dar

__1_3. 2.1

0=z =WV I &
j:[[{ .G_ 21) [—-—-— [3210(1?2 -, %) + heat flux terms]]}

(8-3)

=2 -
X r2 dR2 du2 dcpa.
Aa vefore, we assume that

2, = ol¥, ILCARR ALPLPY 5, - ¥ - 3,) 8(g, = @ - Byp)zy + 2y
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Since 621 /36 = 0, this implies that ®, = 2nz, and

1 2n 2n
R f 2, 46, 46,

@ =
T2 = Yy 0
- - - v
i = o(Ry) B(d, - o =) 8y, - ? - Bo) (B-4)
% (D,' 21 p 2% -
X 5x o j; 9(r)50851901209;,) a6, 6, + @y .

Note that o(rm, p12,cp12) depends only on 6, - 6,, since

).

2 2 2 2
= - - r co -
T, (z2 z1) +r° + 1 2r c s(e2 e

2 1 12 1

Since Pin and cp1 o are independent of 91 and 92,

f27[ f21t 2% [ 27(-92 ( ) ( )]
o de, dg f f o6, - 6.) dle, -9 de
0 0 1 2 0 92 1 2 1 2 2

2
2nj; i a(e) a(e) = 2no?,

so that
g ~ - 2 -
= - - - - t -
@, = p(Ry) B(T, - T, 12) %0, - @ Pro)ey o'(R, R11P129,,) ol
(B-5)
Substituting Eq. (B-5) into Eq. (B~3) ana integrating with
respect to dﬁ; dcp1 gives
dr , d ' B-6
§R+§g+v§,<pa=o, (3-6)
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where

3 9
Vﬁ_,: <‘a';,"a_' .

This is just the equation of continuity in cylindrical coordinates.
In similar fashion, integration with respect to T v dp and @ aw ao

yields the equations

d? - - =
gt p(WeV U = pP, (B-7)
R
or
- S %) ol
%(pﬁ’) + V. (B W) + o-f-= pP
R

and

247, (RF) +ogu =R (3-8)

R

which are the expected momentum and entropy equations.

i}

Note that one need not assume R ae/at u 0" 0 in order to derive

these equations, as long as we have (3/36) u o= O

The above is a straightforward adaptation of the previous theory.
We must now choose a form for the force function between two particles,
and then evaluate the expreésions p-I? and pa.

In actual practice, the two-dimensional array of particles have
mass proportioned to their initial distance from the axis of symmetry.

For purposes of this correspondence, it seems much easier to assume that

all have the same mass (otherwise, the basic assumption that particles
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are identical would be invalid). As noted above, if we assume that each
Particle is the representative of a ring of particles, a self-force must
be taken into consideration. If one goes back to Eq. (B-3) and lets 521
contain a term E;elf independent of particle 2, then it can be readily

checked that the momentum equation will become

5ot V‘(pﬁ’: = p-15’+ p?self' (8-9)
By symmetry this E;elf is a radial force and will in general make it im-
possible to express the right-hand side of Eq. (B-9) as the gradient of
a function.

In addition, this E;elf is most reasonably eéxpressed as an average
over the hypothetical ring. In other words, if 521 is the usual force

between particles, one expects the self-force to be something like

1 2n

ox _/; Toy 46,5
T2

z,~2,

and this may well diverge.

Therefore, we must discard the self-force concept. However, we
wish to preserve the averaging technique. To do this, we appeal to
cylindrical symmetry to argue that the averaging procedure is the best
two-dimensional description of the actual three-dimensional force dis-
tribution, Hence, while each particle is not now regarded as the rep-
resentative of a ring of particles, its 6 coordinate is essentially
arbitrary.
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Therefore, we take as the force function between two particles in

our two-dimensional array the quantity

- 1 fe’f )—-»
fo1 = 2m o £(r) 090085 26,

- 21
1 A
=-——f (r, . ,9,.,.) — (z cose-r)de]r
BN 122%12’ 7,7 e 2" ™

L [T el ) 5 (2 - o) 20
-l (r, 5 —_ (2, - 2 de]z
|27 0 127112 Tis 2 1
=T T+ Z
where f?m is the usual interparticle function between three-dimensional
particles (for convenience, only nondissipative forces are discussed

here — dissipative forces will be discussed below). Therefore,

(B =2 [[o®)et £, x & az (8-10)
P " 2 21,272 2 2
and
> -
) 1 . -
(pP )r - ff p(RE)G fm,rrg dr, dz, (B-11)

One now makes the usual first order approximations and applies symmetry

considerations to obtain

b 2 =)
-3 _ a o)

(DP)Z = "3 [ﬁ—ffo'f21,z(z2 - :«.:1)r2 dr2 dz2_ s (B-12)
S d p2 .

(DP)r =~ 3 [ﬁ—ffctfm,r(rz - r1 )r2 dr2 dze- o (B-13)
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This would be fine if the two quantities in brackets were in fact

equal. The bracketed quantity in Eq. (B-12) can be expressed

where 4t = r2 dr2 d22 de2 is the threé-dimensional volume element. How-

ever its counterpart in Eq. (B-13) is

2
£ £ 6 .86 -
£ \/Po r (r2 cos 6, 1) (r2 7 r1) drt.

In general, these expressions will not be equal, since o' can be a com-
plicated expression in r2 and 22.

The problem is that we have lost a good deal of symmetry in these
expressions by integrating o and f separately over 6. Initially, o is a
cutoff function symmetric in all three directions, which allows one to
meke general first-order expansions. However, o! is a nonsymmetric cut-~
off function in two directions which allows one to make first-order ex-
pansions only in r and z.

Hence, this simple averaging technique for interparticle forces is
not valid either. Instead we must take a weighted average in order to

introduce symmetry into the appropriate integrals., Therefore, we now

define

2x
_ 1 -
T = e f of(r,, 9 ,)5,, de,
/ ode 0
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so that Eqs. (B-10) and (B-11) are replaced by

2] 2o
m\[l/‘p(r2)° £51,r52 2 4%

] 24 L -
- mfp(rz)c T (:r2 cos 6, r1) ar,

(P,

n

2 =-af 2y £ ,
(P)Z - p(ra) T (z2-z1)o ar.

Now we can make three-dimensional expansions, using the fact that

o is a symmetric cutoff function, and the result will be

= 2
(P)l‘ = - -§r— [%— —;—; (r2 cos 9 - 1‘1 )2 d'l’], (B-'lh)
= 2
(-P;,)z = - Ba-z- [ﬁ— ;—:‘—2- (z2 - 2z, )2 d'c], (B-15)

which are equal by symmetry. Hence we make the association

2
.-...--f-——(z -z‘) as,

wvhere p is the pressurce. Exactly the same symmetry considerations enter
with regard to dissipative forces. If 321 is the usual dissipative force
between three-dimensional particles, one takes as the dissipative force
petween particles in the two-dimensional array
2t [T, e
81~ “2x o 82 %2’
J

o 46
0 2
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and the resulting integrals p? and oQ will be analogous to those evaluated
in the previous correspondence theory and in Appendixes C and D. Hence,
one will get derivatives of a quantity interpreted as the stress tensor in
p? and the heat conduction term V+(kV) in Qe

To conclude, it has been shown that correspondence can be achieved
for problems with cylindrical symmetry when all masses are assumed equal.
Attempts were made to relate this approach to that actually used in calcu-
lations by coalescing particles in order to approximate a distribution
with mass proportional to distance from the axis of symmetry. Thus far,

such attempts have not been successful.
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APPENDIX C

VISCOUS CORRESPONDENCE FOR PAF

As on p. 20 of Ref. I-2, we wish to find a formula for dissipative
forces between PAF particles for which angular integration gives us a

term to be associated with the derivative do ik/ ox, of a stress tensor

1, % uy

du ou

o = + - -2- o) ‘) + g ) .

ik O, 3x, 3 ik 3x, 1k O,
1¢ o(F) is constent in space, then Eq. (24) of Ref. I-2 isin such a
form. However, in general, there is no reason for p to be constant; in
fact, in almost all problems studied, it can vary considerably. There-
fore, it is necessary to look for new terms to put in Eq. (22), Ref. I-2.

Actually, several terms were omitted in the derivation of Eq. (24)

of Ref. I-2, and, before looking for new forces, we will discover the
correct expression for the forces used in Eq. (22)

The expression

- - - =1 -» -5
f CALICIN NS PEIP Bror%2) 92

can be expanded to
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Sl + @ - 203 ] foto@ e, E @ -7

g -
. 122 (3 v, )2 2.,
[( 12 V )821(1' 2)5121@;0) N 3¢ (a’lQ va’ )g21(r12’812’q>’0)
12

1
*5( 2% )’ G A V‘P’o)]
a
12
where use has been made of the fact that g and 3&/3p are expected to

vanish for @ = 0. We have also assumed that o was independent of De
Removal of this assumption changes none of the results presented here,
but merely adds complication,

If @ is expanded to second order, we get one first-order term and
five second-order terms. In the event that E’is linear in a [so that
the term in (C-§’°V)2 g_’ vanishes] and that the first-order term vanishes,
there will be four second-order terms to account for rather than one, as
is shown on p. 20 of Ref. I-2,

With g = A(r12,¢12)%1 + B(r12,<p12)§’21(§’21 -07’21), the first-order
term does indeed vanish and (Qev )E = .

0
First consider A(r )021 . With

12°%12
= 2Veo1 2. 1 /2 - 25
6’21 = [(::-2 - T)Vid + 5 [(r2 r)vITy

the following are all second-order terms:
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(1) o [orle @ §UE, - )T
ae-‘I
1 -
- Lo [omngs, '5;7333'3; &

2_
6
Jf Ar xk BXR sin ¢ dr d@ 4o

a
-139 (;/ﬁ oAr dr -—%;L o

[Here, as in the following, 1 denotes the vector index (no summation)

L}

and sums are always taken over indexes Jj, k, I, m, etc., whenever re-

peated. xj means (5; - Eﬂ)j, and all derivatives of T are at Ez.]

@ L [aZ@ BTl - )R
=§ng.ngg§.5,%;%
I
=%‘B<\/:: A-aa-%r’*ar>%%;xi.
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W 8 [oR@ -R)vFu, - 2)vR

__n:g(f A hdf)a“a‘k'

Hence, using these terms in the expression for pi?gives

(2 duy
v
with ©
V= %g Aarh ar,
0

which is not of the desired form.

Next consider the term

- o -
.3 .
B(ry 5@y 008, (01 °55;)

Again there are four second-order terms, and the final result is
aEarﬁ{
"

P M 5- 32;

=)

+ 2p a&k “(éu 3;‘ + 5 )

where
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Since this means only one of the independent coefficients 1,{ has
been determined, the problem is to find another expression to be added
to Evhose integral can also be associated with the derivative of a
stress tensor. We hoped to find another expression linear in aﬁ however,
none was found to be suitable.

Hence, attention was turned to other expressions in the values

'3(?1). We first observe that

-

— - - A +T
L oD@ + @DE) - @D (22

= (vDEF) + 1 [, - F)VUFDE)

to first order. If we suppose that

-y

)+ 5
e, p0,) (7D (2)

were part of the §;1 force, then it can be checked that the usual inte-

gration and multiplication would yield an additional term

32'; <°2"181k :_?1_;9,

with

Similarly, the term
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yields the expression

Eack‘ [pave G'Gxi ¥ ;}9}’
v2>= -25-3 (j;m onh dx).

We note that both of these terms are of the desired form, and if g

where

were equal to their sum, we would have

(E’ [ ( ) : au]
P i-rx Y2 \ox_* =)t eh 1k S
as desired,

+ r du
However, neither ( V~a C ) nor T'J' <r

be approximated to first order by the values u (ri)-

can (in general)

Hence, we abandon the restriction that dissipative forces be of a
wo-particle nature and look for analogous expressions involving a par-
ticle and its neighbars, in the hopes that these more general expressions

can be approximated by u(r ).

The natural candidates are, of course, expressions in

w3 (L Bta)
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*
(where ?2...’1" . &re the positions of the N neighbors of ?1) and
N+

- = -
;ul (r1 oo .+rN*+1> )
%

*
N +1

In both cases, we are interested to see if derivatives of the vector
o *

field o at the midpoint of N + 1 particles can be approximated by the

values T(?i) to first order.

We first observe that approximations of the form

T
LR - 2 ()

are only good to first order. Hence, the natural procedure of using
such estimates for W at hypothetical middle points is not valid, since
the result can only be a zeroth-order approximation for a derivative.

However, the approximation
T o+
3w - i) - [@ -] T

is good to first order in the derivative, so we can assume that such
directional derivatives at the midpoint of any line segment are known.

Also to first order in derivatives of T we can approximate
-l

— g - - = -3 - = = - -;l -
52 1+r2+r3>__1_[5'\i’(’1+r2>+a?(’1+rj+bﬁ’(’2+rj>etc],
5?:; 3 3 Bxk 3 Bxk 2 3xk 2 R

therefore, if we can find eguations giving us the quantities

- -
r

&
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_.y
from the known directional derivatives at the points —-—-—J- then we will

indeed be e.ble to approximate derivatives at the midpoint. In one dimen-
sion this is trivial, since all derivatives are in the same direction.

In two dimensions, first consider four particles at r 3 "’2, ?5, and
?h' Unknown are the 12 quantities:

auC' )
e
3\? i+r.) -
EC 2 /=Yy

for 1,J = 1,ee0,k; i < j. If we denmote

(r)-u(r)byc (= -Etji)’

then we have the six equations
C.=a .x.,+b 5y
13 T %555 * PigVy

Also both ;i 3 and 37;3 satisfy the equations
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But this seems to exhaust our knowledge of the system and we have only
10 equations in 12 unknowns, so of course there is in general no
solution.

We now go on to five particles in two dimensions, using the
same notation as above. It can be checked that both xi 3 and yi 3 mst

satisfy the five independent equations

- - - -5
-5 -
= 2.“_'. + 225,
> .2 _2 -3
215 + 223 215 + 213
- -
and
_’

- -
3 + z,+5 215 + z5)+.

These 10 equations together with the 10 equations

Py
<y = ai:j?ij +bij§'i

allow one to solve for the 20 unknowns i"i 3

desired derivatives. This system of equations can be easlly simplified

and 37’1 p and thus to obtain the
to the problem of inverting a 5 %X 5 matrix, but beyond this point further

simplification seems difficult.

The analysis is quite similar in three dimensions. Here we write
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o P o+ 7 o T o+ TN
- - - - i - - i )
w (r;) - U (xy) = (7, - Ty "‘5"%) + (7 - rj)y Sy "‘5'"%)
S r o+
- = U i J
+(r1-rj)z§-z. 2 >’
or
g - -

K a,.x +b,.y.. + ¢ E?
13 7 T15713 7 i34y 13713
As with .four particles in two dimensions, the use of six (or fewer)

particles in three dimensions does not provide enough information for a

general solution. However, with seven barticles, the E;J, i;J’ and E;j
must all satisfy 14 independent equations of the type
- - - =
Vig T Vg = Wg ),
=W, + W
I P 23°
= -
This gives 42 equations which, together with the 21 equations Kﬁj = aijxij

+ bijigj + cijE;j’ give 63 equations in the 63 unknowns. Solution of
this system of equations can easily be reduced to the Problem of inverting
a 21 X 21 matrix, but further reduction seems difficult. Hence, in prin-
ciple, one may always approximate (to first order) derivations of a vector
field at the midpoint of N* + 1 particles only from knowledge of the field
itself at these points as long as N* > 2n (n is the dimension under con-
sideration).

In Practice, one would never invert such complicated matrixes as
those above, but just use n sets of two particles whose midpoint was
nearest the general midpoint; approximate directional derivatives at the
general midpoint by directional derivatives at such two-particle midpoints.

and use the resulting n X n matrixes to calculate the fixed derivatives.
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We must now show that the generalized ‘é’ force above can indeed be

fitted into a correspondence between fluid dynemics and PAF. We retreat

to the generalized Iiouville equation on p. 12 of Ref, I-2

- \E ( a‘EJ‘> —»’th) ?(th

vhere now

f)/

._.1_( *f g "">
=2 13%3 * 837
1

-3 * :
where gj depends also on the N neighbors of the ] perticle, but has no
sixple resolution into two-particle form. Integration as on p. 1% of

Ref. I-2 gives

dz‘+1‘f-Vz +fd§’dﬁ’d V-[fg-(?f )]
- B 2 2¢23m 21721
1

AR
N +1 =
V .[fd?.“d?* d.?"‘d?* dcp -ood(p* ]
v 2 N+l 2 N4l 2 N+ 0 #1

1 d élq’1
I T Zy @ drz gy = 0

mae Pirst three expressions are unchanged and the last is irrelevant for
tze present diséﬁssio’n, so it is only the fourth term with which we con-
cerr ourselves, i.e., we must suggest a form for z , Which upon inser-
tion of mean values for 3 and @ allows us to perfo?‘mingula:‘ interactions
on the term in brackets. |

We have only to prescribe a form for z , in the region where §’1

N +1
<2 nonzero and, in fact, we assume

-123-




-5 - - . -
z (r 3%, sWisttoU 0 5P0,°°%,0 ,t)
N*+1 1 N*+1 L N+ 1 N +1

_ [p1+-.0+pN*+1’ (p1+oco+q) * ’ r ,...,r N* ]
N 41 N 41 1(¥+1)
X p(x,, 1) o t)]'[‘s" [L + (F - 79 ]
L I I R
k=2

x oley - (o + 5 - 7 -98)]

in this region. As before

= o8(2 - D) 8(p - 7).

It '1?' is the term in brackets above, this means that

k.3
- N 41 P, +oeetn x
-y
Pl =-n17 fd;’ecood? p(;’k)o[ 1 _rpN +1,q)
N+ ke N +1
*
N #
- =2\, eee ra
o Z (# - F) Vo, ’rl(N*+1)] &
R et

With the usual first-order expansions for p, o, and E; s Wwhere

N*+1
> c.[ Pt ey +1] -»(" +’"“'N +1> Z > o
I P S TC W DL o o x " T
k=2
- N4
+ H[rm,...,rl(u* ,q)1+“;+(pN*+1]_ %u‘f_(r +'"+rn*+l> Z -
+1) N +1 %y N 41

[NZH (r _ r ). V]:'C +...+rN* 1)}
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it is straightforward that

- * o * du
o N +1 i N+
pP ! = [p 1 (?uk + A) +p (B ],
52; T, I, 13 35%
where
1N N[ re ® 5 T
n= _5; N*.*.] (k) L\;/;) ”t/;) 0Hr12 drle"’dr](u*_‘_‘ yJ
and ‘
* *¥ T oo - -
—3 J—-—-N;- N o e 2 oo
=% =, (k) bL/; \/; OCryp arypt dy (k) |

This is an expression of the form we were looking for.
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APPENDIX D

HEAT TRANSFER TERMS IN THE PAF MODEL

It is desired that heat conduction be incorporated into the PAF

model. This is done by allowing for heat flux as well as work flux terms

in Eq. (4) of Ref. I-2. Here we now write

1 * ar 1 * - -3 *
wooE) el ) Ae@ - Y way,
1 1 1

vhere H will be specified later. Among other requirements H must, of
course, satisfy H(Ji,JJ) = -H(JJ,Ji), s0 it is indeed a flux between
particles,

In the previous discussion, the variable ¢ has usually been left

unspecified. We now identify ¢ with internal energy. Therefore, the

last expression in Eq. (6), Ref. I-2,becomes

ar
o) 1 21 = o =
357 {zz[ "3 T ey t(uy - W)+ H(I, T )]}

and so instead of Eq. ( 15), Ref. I-2,we write
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1 =2 = = Y T S | = g2 2
Q=13 fdr du, a7, [i‘ms‘21 (U -u1) + 321 (u2 - u1) +H(J2,J1)]pu

- = 2
x &% -u, - am) 8(J2 -J, - 312),

2" Y
or
~ 1 = =1 =g o—’ . rg T l o_’
Q= Efdrz‘” [f(rm"”z Bip) B o + BT 00T 35 Py o) 0
+ H(3+B12,'.'I”):|,
where
2 —
pe R ¥ =), 1i(=2 = -
%2 = [(ra - ’1) VF“ > [(ra - "'1>v:| wo
and

-3 - -
Bia = (re - r1> VJ .
We make the usual first-order expansions and observe that the term

11 & =2 .3 becomes
2f dr, poTs, "0y

- —
-21p ( f r50f>g—uk— .
3 \Jo e
For the ;;’.a? term we calculate separately for all the expressions con-

sidered as candidates for 221:

-2 '
- 1 - 2% ® h 2 /ou
(M) A(r12’q>+-2-612)a12 sives—f-(‘/;) OAr dr> <&§> .

-127-




- 1
(2) B(r12,cp t3 612)(5 5’ )s o1 &ives

(5) similar results would hold if the generalized € force, with terms in

v-*’(t . °+rN'* 1)
N + 1

were used, since the cdlculations are analogous.

Hence, if we use a combination of these forces for 221 such that

= )
(aP); = ~(Ve, T e

then vhat we have here is just the expression

a“ka“k
S ij

From p. 123, Eq. (14) of Ref. I-11,

'ols
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aI du
L= a_i O (&
dt pij Xy * ij <K bxd ’

vhere I is specific internal energy. From Eq. (19) of Ref. I-2,

_ L - .
- 1 T 3
%p% + V-(p'l?J) = p %% = Q= mpiJ g‘; +f d.l'e pGH(J+ﬁ12;J):

since

= «p O g, .e
Py T P Oy T %y

Therefore, as J = mI, we can associate the expression

£
m f ar, poR
with
d -
< "%nx_>= v(kVT) .
i i
In fact, since temperature is a function of internal energy, we take

B(3,59,) = 71T,(3) - 7,(3,)] = o(F, - F)VHEF)
+ -15 7[(?2 - ?1)"7]2 '1‘('1_')1),

so that after the usual calculation we find that

e f d}"zpaﬁ(ﬁa,?‘)-- -a—%k'[%eni (J’:yrua dr)%-rx;(a)]
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It has also been suggested that the variable ¢ be interpreted as en-
tropy, so it is of interest to note that heat conduction terms can also be
incorporated into PAF under this interpretation. Here we add a flux term

H(Jj,Ji) to Eq. (5), Ref. I-2, so that

TJ - Z {[gﬁ'(“ - )] + 87,9 )}

and again we take H(Ji,Jj) = (const-.)('.r.'i - mj), which gives the result

5=1[1k§§i +a:a<k KZEQ]’

2 o
_ const 2p L
K = 5 Tj -3— o or dre.

where

Equation (49.4) in Ref. I-1k4 gives
T @3 + w‘?-v> ™y 0, + Ve(xkvT)
P\t )= & %ix .

Since we have

%+V‘p§5= p<§+§°‘75 = R,

these equations are in agreement. Unfortunately use of this procedure
requires knowledge of the temperature as a function of position. Except
for a polytropic gas in which T « I, this may be unknown.
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APPENDIX E

MASS REARRANGEMENT IN CYLINDRICAL COORDINATES

The initial particle configuration in cylindrical coordinates is
generally arranged in such a way that particle mass is proportional to
radius throughout a region of constant mass density. Subsequent circula-
tion of particles through the mesh, howeirer, can convect massive particles
towards the axis and light ones away from it, with a resulting loss of
resolution or creation of inétability, respectively. One effective method
for relieving the instability difficulty, described in the text, involves
destruction of low-mass particles which have moved far from the axis.
Another method would do juét the opposite; through a mass rearrangement,
the mass of any particle could be changed every cycle, so as to continue
the proportionality of mass to radius. Thus, for example, we could add

to the procedure the interparticle mass flux calculation, whereby

mn-i-1 - %
J . X
ot 1y’
i
where, for mass conservation, we would require K, . = -K... A reasonable

1 Ji
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choice for Kij seems to be
+r m
Ki:j £ ot ) Ci r'J ’

and it can be shown that a hecessary condition for stability is that
0< §<1/2,

Now it is necessary that such an interparticle mass flux oot result
in any net macroscopic flux of mass; momentum, or energy. This means,
then, that the particle coordinates must change in order that subset cen-
ters of mass remain fixed. It can be shown that the only way to accom-

plish this is through the simultaneous solution of the following for the

new coordinates, z-{_j’ s 1n terms of those before mass redistribution, ¥

J
N> =3,
R _ Z*? T35 O
i o4 Z*pK . Z*p ?
mj-ati 34 i mj-a ‘ KJI

where the p modifies the sum to include only those terms for which KJ 3 > 0.
(This equation is derived by insisting that all the mass associated with
a given particle have the same center of mass after the redistribution. )
This inhomogeneous summation equation can be solved by successive substi-
tution of the first term on the right into the second. In many cases, a
single substitution Probaebly will suffice.

Finally, we must redistribute energy and momentum, and the appro-

priate equations are
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PART II

SOME BASIC PROPERTIES OF PARTICLE DYNAMICS
INTRODUCTION

The results of a pioneering study by Pasta and Ulam [II-1] indicated
that it should be possible to develop a useful technique for high-speed
computer solutions of problems of fluid dynamics in which fluid elements
are replaced by discrete interacting particles. Their work did not, how-
ever, clarify the nature of the correspondence between the model and a
true fluid. There was, for example, no indication of how the interac-
tlons should be chosen in order that the model possess the equation-of-
state properties of the fluid, and in addition there was no provision
made for including the dissipation necessary to remove reversibility.
Later work [II-2, II-3], however, has demonstrated that these objec-
tions can be overcome. Thus it has been shown by a statistical analysis
that it is possible to establish the relationship between the interparticle
force function and an equation of state for the fluid. Also, it was
shown that the addition of an internal variable for each particle and
inclusion of a dissipative term in the force function can satisfactorily

remove the reversibility. Part I of this report shows the most recent
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status of the method resulting from these generalizations.

We have found, nevertheless, that considerable information which is
pertinent to such a generalized model can be obtained from some simple
additional numerical experiments using the original Pasta-Ulem procedure.
The results of these experiments are of considersble aid in the interpre-
tation of the earlier work and also show how to resolve some ambiguities
in the development of a workable generalized model for solving nonsteady
fluid dynamics problems in several spece dimensions, using high speed
computers. It is, therefore, the primary purpose of this Part to present
these results and their interpretations.

An additional result of these simple numerical experiments has been
to demonstrate a somewhat different type of problem to which this sort of
calculation can be successfully applied. Apparently it is possible with
very few particles to be able to meke meaningful statistical analyses of
the properties of true molecular assemblages with a high degree of
accuracy. Some preliminary discussions of this interpretation are also
included, and we shall soon present elsewhere the detailed results of an

extensive investigation.

-137-




CHAPTER 1

THE NUMERICAL EXPERIMENTS

We have examined in detail the dynamics of a one-dimensional set
of N particles, interacting in pairs, and confined to move between rigid

walls (accomplished by holding the first and last particles identically

at rest). As in the Pasta-Ulam calculations, the force between particles
was repulsive and inversely proportional to their spatial separation.

The initial conditions for all examples were such that the particles were
uniformly spaced with separation s, and all but the end ones were moving
to the right (positive x direction) with the same velocity, U.

The equations which govern all details of subsequent motion are

::j " fex T x 02- x,’ (11-1)
' J J=1 J+1 J

dx,

-d-?.t-‘l = uJ_o (II"E)

These describe the time rates of changes of velocity, uj’ and position,
xj’ of particle #j. The constant parameter, c2, is the ratio of the

force constant to the particle mass, the latter being the same for all

particles.
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To derive an energy integral of the differential equations, multiply

Eq. (11-1) b& uj and sum over all particles. After some manipulation, the

result becomes
N N=~1 x -x
z Jé. u§ - Z c2 Iin (-—'2—-———-——1—’-1 P ) = K. (II"5)
J=1 J=1

Use has been made of the fact that particles # and #N are held identi-
cally at rest, so that X, and XN are constants. The first sum represents
kinetic energy, while the second is potential energy. In the latter, the
incorporation of s shows a choice of integration constant making the
potential energy vanish when the particles are in their initial spacing.
E is the (constant) total energy. (A1l energies are specific, that 1s,
measured per unit mass.) The energy considerations are of importance
for several purposes, particularly for judging accuracy of the computer
solutions and for deriving the fluid-dynamic properties of the particle
system.

For the computer solution of the particle dynamics, the time deriv-

atives are replaced by finite difference approximations:

n+1 n
du u -u,
i AR I
dat 5t

n+1 n
ax b 4 - X
s R I |
at o5t ’

in which the index n counts cycles of elapsed time, each of duration &t.
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Thus, Egs. (II-1) and (II-2) become

n+1 n 2 1 1 :
uj u‘j +c §t <xn il xn> s (IT-4)

37 % Fga Ty

]

xg‘*‘ = x‘j’ + u§+1 Bt. (1I1-5)

In this way, then, evolution of the configuration through a time cycle
is computed by substitution of available data into Egs. (II-4) and (II-5)
for each particle. Note that the use of the itewly computed velocity in
Eqe (II-5) implies that substitution imto Eqe (II-4) comes first; the
reason for this particular ordering is that it contributes significantly
to the difference equation stability. (See, for example, Ref. II-2,
Pp. 18-20, for a demonstration of the stability argument.)

Whereas the original differential equations of motion are identically
conservative of energy, the finite difference approximations are not.
This is an important difference from the situation in Part I, where the
addition of an internal variable resulted in complete conservation. It
can be shown that in Part IT the discrepancy per cycle is proportional to
(8t)2, 80 that the cumulative discrepancy over a prescribed elapsed time
is proportional to &t and can therefore be made as small as desired.
Experimentation has shown further that when the overall relative dis-
crepancy in energy has been reduced to a certain smallness, then any addi-
tional decrease in the value of 6t will make a negligible change in any
of the calculated results, indicating that the solution is as accurate

as desired. In all calculations used in this study, the value of 5t was
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jndeed sufficiently small that the solutions, in effect, are those of the
differential equations.

The details of the calculations are more particularly defined by spe-
cifying the units of distance and time. (The units of mass do not enter,
s11 quantities such as energy and force being measured per unit mass.)

In all cases, the unit of distance was chosen to be the initial particle
spacing, s = 1.0. Thus, with N particles, including those at the walls,
the region of allowed wotion was of jength (N - 1)s, and contained (N - 2)
moving particles. The units of time are completely specified by the
mmerical value of c, which has the dimensions of velocity. For all
problems, c2 = 1000. The only variables from problem to problem were N
fhich was either 27 or 52) and U (which was given various positive values
in the interval 5 < U < 30).

A typical example of the results obtained is given in Fig. II-1, in
which N = 27, U = 25. The lines show the positions of all 25
interior particles as functions of time. It should be emphasized that
the jaggedness of the lines in some parts has resulted from straight-line
connection of datum points obtained from the computer at sampling times
which were many cycles apart. Data plotted from every time cycle would
show completely smooth particle trajectories, but were not obtained be-
cause of the extra computer time required. It should also be noted that
the periodicity of amplitude qscilla.tion for the particles in the right=-
hand compression region also ig sn illusion resulting from the slight

difference in phase between the true oscillations and the data
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sampling period. (Samples taken in perfect phase with the true oscilla-
tions would have obscured their actual amplitude, which is a quantity of
primary interest for the study.) A detailed interpretation of the many
features of these and similar results forms the main body of this part
of the report.

Figure II-2 shows, for the same calculation illustrated in Fig. II-1,
the histories of total kinetic and potential energy. Conservation of
total energy can be seen to be almost perfect. The almost exact inter-
change of kinetic and potential energies at later times is a feature to
be noted; with dissipative forces, the kinetic energy would, instead, be

expected to be less,
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CHAPTER 2

MICROSCOPIC INTERPRETATION

Our principal purpose in performing the study was to elucidate the
fluid-dynamics representation of particle-and-force models; nevertheless
it is helpful to discuss first the results related to molecular dynamics
interpretations. Several of the resulfs will then be useful in the fluid-
model discussion in Chapter 3 following.

There are, of course, several respects in which the one~dimensional
particle array differs from a true molecular assemblage. The primary
difference is the constraint to one-dimensionality itself; another sig-
nificant difference is the enormous discrepancy between the nmumber of mole-
cules in a macroscopic material sample (~1 020) and the mmber of particles
in a calculation (~ 02). The first of these differences precluded the
possibility of representing a physically realistic problem in these pre-
liminary calculations; the second introduces a conslderably closer study
of fluctuations than is usually encountered in the kinetic theory of
gases. The restriction to one-dimensionality nevertheless leaves a mmber

of features worth discussing, but any further studies intended to match
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true molecular systems must have the restriction removed. Concerning

the restriction to few particles, there already exist extensive data

from some studies by Alder and Wadnwright [II-4] which show that in at
least one class of problem it is possible to obtain results of consider-
able accuracy with several hundred particles at most. Their investiga~
tions, however, appear to have been restricted to studies of equilibrium
properties (or the approach to equilibrium) for particles interacting
through short-range forces only, and forvhich wall effects have been mini-
mized. Our interest, however, is in extending this type of calculation

to include somewhat longer force ranges in studies of processes far from

equilibrium, In addition, the effects of walls in studies of shear
stress, heat conduction, shock generation, etc., are of primary concern,
and it has been one of our purposes in this and other studies in prog-
ress to see which phenomena could still be investigated with the Idimited
mmbers of particles menageable by present computers.

Usually the primary objective in theoretical studies of molecular
dynamics is to determine the manner in which microscopic phenomens mani-
fest themselves in macroscopic properties. What » for example, are the
relationships between velocity fluctuations and interparticle potential
on the one hand to temperature, bressure, and entropy on the other?

What are the microscopic Processes that contribute to viscosity, heat
conduction, and shock structure? There are, of course, many satisfactory
answers to these questions for the relatively simple circumstances in

which intermolecular forces are weak and departures from equilibrium are
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small., Beyond these conditions lie the reglons where perturbation
theories no longer epply and the mathematical difficulties seemingly
become insurmountable., These, then, are the circunstances for which de-
tailed computer solutions of molecular dynamics problems could serve two
useful purposes. First, they could explain or predict directly the phys-
ical properties of materials subjected to extreme enviroments. Second,
they could supply the theoretician with exact and detailed data for com-
parisons with his analysis, for circumstances which are difficult to
measure experimentally.

The present mumerical studies certainly satisfy the conditions of
being far from the circumstances in which simple perturbation methods can
be used for theoretical investigation. For one thing, the intermoleculaxr
forces are strong, as is demonstrated by the fact that at times the poten-
tial energy of the system significantly exceeds the kinetic energy (see
Fig. II-2). For another, the processes are strongly time-dependent, in-
volving, in fact, one of the extremes of time-dependent, nonequilibrium
processes — a strong shock. Thus, we must, for the present, be re-~

stricted only to discussions of interpretation of the results, entering

into analysis for predictilons only in heuristic fashion.

Consider, for example, the shock transition occurring as the par-
ticles "pile up" against the right-hand wall (see Fig. II-1). The calcu-
lations show several important features, all consistent with the true pro-
perties of a fluid in such circumstances., Especially evident is the well-

defined shock itself, which, in its leftward propagation, maintains a
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sharp transition between two regions whose properties are separately quite
uniform. The region behind the shock (to the right of it) has properties
of particular significance. First, there is a mean compression among the
particles; second, the mean velocity of the particles has dropped to zero,
Thus the kinetic energy of mean motion has vanished, and in its place is
the potential energy acquired by the compression. Most significant of
all, however, are the residual fluctuations in the compressed region, and
it is the meaning of these which is worth investigating in detail.

First, however, note the contrast with the expansion region occurring
at the left side where the particles are moving away from the wall. Again
there are two regions, each with considerable uniformity, but the transi-
tion is not at all sharp, and, in addition, the stagnant region has no
fluctuations.,

The detailed explanation of these phenomensa in terms of fluid-dynamics
interpretations is reserved for Chapter 3; for the present discussion we
are guided by the fact that the entropy of a fluid increases across a
shock but remains constant across a rarefaction, together with the infor-
mation that the magnitude of entropy change across a shock can be pre-
dicted from the laws of thermodynamics and the conservation laws of mass,
momentum, and energy only, and is independent of any detailed fluid ‘Pro-
perties other than those which describe the states on the two sideé of
the shock. It therefore becomes reasonable to inquire whether a detailed
assoclation can be made between fluctuations and entropy, and there are
several ways in which such an association can be investigated. Consider

first the following intuitive argument based upon simple Physical
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considerations. It has been shown that the differential equations

governing the particle motions are completely conservative of energy. If,
then, there were no fluctuations behind the shock, all of the kinetic
energy would have been converted to potential, and a subsequent slow ex-
pansion would allow complete recovery of the initial conditions, in viola-
tion of the irreversibility of entropy production through a shock. Thus,
the shock transition, which results in vanishing kinetic energy of mean
motion, must result in & residual kinetic energy of "random" motion with
consequent lowering of the recoverable potential energy. Then a subse-
quent expansion (such as is shown in Fig. II-1 when the left-end rarefac-
tion interacts with the shock) will return the system to a state which
differs from that at initial time. This is well shown by the retention
of the fluctuations in Fig. II-1 at t = 0.7 when the re-expansion has re-
turned the system nearly to its initial compression; the kinetic energy
retained in those fluctuations is that which cannot be recovered, in
accord with the second law of thermodynamics.

Yet to be explained, however, is the question of how the particles
"enow™ just how much fluctuation to create when the shock goes by. As is
stated before, this cannot depend upon the detailed nature of the inter-
molecular forces except insofar as they contribute to the pressure states
on the two sides of the shock, i.e., to the time averages of the inter-
particle forces at only two mean states. This implies that any type of
detailed variations in intermolecular force which does not change the two

crucial average forces must result in the same magnitude of shocked-region
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fluctuations. Only the detailed structure of the shock transition itself
can vaxry.

Actually, it is possible to broceed somewhat further in the explana-
tion of these phenomena through a consideration of several simple quanti-
tative arguments. We have seen that the equation of motion for particle

#J can be written in the form

2
d x,

# = F(X'j - xj-l) - F(xj+1 - x,j)’

in which F is a force function which is repulsive when positive. As a
model of the behavior of s particle during shock Passage, consider the

motion of #j when the motions of its neighbors are prescribed to follow

the means expected for them in the transition, i.e.,

+

X149 = (J £1)s + ut, for t < tJi1

+

=(Jx1)s+Ut for t > t

Jx1” Jxv’

in which tjil is the time at which the shock intersects particle #x.

We now define e(t) to represent the deviation of the position of particle

#J from the mean position between its two neighbors:
1
e(t) = §(xj+1 + xj-l) - X5

50 that € has initial conditions (at t = tj+1) of the form € = 0, de/dt

= 1/2 U. Then, except at the two singular times,
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d2€ [1 ,{1

which, for sufficiently small values of €, can be approximated by

9‘—-§=2€ DFC—(Ji]—-——i—>—--§ c
at

Here D symbolizes derivative with respect to argument. The condition
that §2 is a slowly varying function of time can reasonably be assumed
in consistency with the smallness of €. [Both require, for validity,
that U(tJ . ) << s; i.e., that the shock be weak.] With slow
variations of § , the equation can be solved with sufficiently accurate

approximation to give

e(t) = —-- sin {(t - tjﬂ),
or, for t > tj-1’
U .
e(t) = 2t sin ;1t, (11-6)

where we have, without loss of generality, chosen tj+1 = O, The quantity

g1 is given by

-2 DE<—S‘_->, (II-7)

where n is the shock compression, available theoretically from the con-

2
c1
siderations of Chapter 3. Applied to the force function at hand,
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F(C) = ci‘ p)
we get
22
g? = 2c 23 ,
s
and
e(t) = ¥ g (E’Ef-@) . (11-8)
2nev2 s

Thus the results of this simple analysis are in agreement with the
fact that the amplitude of oscillations behind the shock should be inde-
pendent of the details of the force function. Furthermore, when applied
to the numericsl calcu.la.tions, the result is in good agreement. The ob-
served amplitude for the calculation shown in Fig. II-1 » for example, is
about 0.15. For that problem, U = 25, M = 2.0, ¢ = 31,62, and the ampli-
tude calculated from Eq. (II-8) is 0.14.

From Eq. (II-6) we see that the fluctuation velocity after shock

bassage is given by

=-d-'-§-=

u‘j s -gcos glt, (11-9)

so that the magnitude of the velocity amplitude is indepenaent of the
2
force function altogether. Thus the time average of 1/2(u .j) , the

specific kinetic energy of the fluctuations behind the shock, is
1 2 1
< > (uj) > = 13 Uz, (11-10)

which is one-eighth of the specific kinetic energy in front of the shock.
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Again this result can be compared with those of the calculation shown in
Fig. II-1, although the comparison cannot be exact, since there is no

time at which only shocked particles contribute kinetic energy. The nearest
time might be t = O.l4, at which time nineteen particles have been shocked

and the others are nearly at rest. Equation (1I-8) would then predict a

total specific kinetic energy

Reference to Fig. II-2, however, shows the kinetic energy to be somewhat
higher than this, and the reason for the dlscrepancy can be seen in
Fig. II-1, which shows that particles #8 to 11 bave already acquired
extra backwards motion from the rarefaction, thereby increasing their
kinetic energles.

Exploiting even further the results of our simple model, we may de-
rive an expression for the entropy of the assemblage by use of the H

theorem of Boltzmann, which states that the entropy is given by
nS = =k [/ ¥ 1n ¥ du dx,

where S is the specific entropy of n particles in a region of length L,
¥ is the total one-particle aistribution function for the system, and
the integrations extend over all possible positions and velocities.
Neglecting devistions near walls, ¥ is essentially independent of posi-
tion in a region of uniformity; it represents the probability density

for finding any particle with specified values of position and velocity,
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and has the normelization property
JI ¥ auax = n.

Iet u' be the amplitude of velocity fluctuations. Then we may write
n u
Y= (a ) ’
in which Q is independent of n and L, and depends upon u' only through

the ratio u/u'. Insertion of this into the Boltzmann formula leads to
the result

} 4
S =k (J.n ‘ﬁ‘-‘ + constant> .

This, now, can be put into a more useful form through combinstion with
Egs. (II-8) and (II-9), leading finally to

S =8, +kln<§'—>, (I1-11)
in which €' is the amplitude of oscillation and So is a constant. We
have therefore verified the correspondence between entropy and oscilla-
tions, showing, in fact » that the former is a function only of the
amplitude of the latter, as expected.

The interpretation up to this point is "microscopic,” because it is
based upon the dynamics of the individual particles. Having shown on
this basis that the microscopic properties of the fluctuations are re-
lated to a gross property (entropy) » it will now be possible to proceed

with the macroscopic interpretation in Chapter 3., 1In this
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interpretation, fluctuation effects are treated as if a dissipative
force had been added to convert fluctuation energy into the heat of
macroscopic elements, as would be the case in any realistic general use
as a fluid-dynamics model.

There are several additional features that could be studied from
a molecular-dynamics viewpoint. Some of these have been presented by
Blackman [II-5] and Butler [II-6], and an extensive report by Gentry,

Harlow, and Martin [II~7] will soon be published.
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CHAPTER 3

MACROSCOPIC INTERPRETATION

The investigation presented in Chapter 2 reveals that a number of
the computed particle dynamics features are related to true molecular

assemblages, and suggests that the statistical properties of nonequilibrium

processes could be studied with considerable accuracy through molecular
trajectory ecalculations. Such calculations can also be given a different
interpretation, in which each particle represents a macroscopic element
of fluid containing an extremely large number of molecules. In reality,
each element should have an internsl degree of freedom representing its
heat energy. For adisbatic motions, this could be identified with the
interparticle potential energy, while for more general motions s We may
identify the kinetic energy of fluctustions as the additional dissipative
heat.

In the formulation of a practical method, an internal variable is
introduced for each particle (see Part I). Then the protential energy is
fed into this internal varisble through work done by the nondissipative
force function, while a fictitious dissipative force function is intro-
duced to convert the fluctuation energy into additional hest.
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This dissipative force must be velocity-dependent, sO that its effects

are irreversible and result in removel of the fluctuations in velocity
(see Ref. I1I-3). Even without the introduction of this more convenient
representation of heat energy, it is still possible to give a full, sat-
isfactory interpretation of the present results in terms of fluid-dynamics
concepts, thereby establishing the basis for development of a practical
computing method.

One of the basic properties characterizing a fluid is its possession
of an equation of state. This means that the dynamics of a fluid depend
upon only & few average properties, rather then upon the detailed motions
of all its molecules. Specifically, we mean by equation of state a
anique relationship among density, heat energy, and pressure. If such
can be found for the numerical calculations described in Chapter 2, and
if its use with fluid-dynamics theory gives results in agreement with
the macroscoplc dynamics observed from the computer, then our demonstra-
tion of a fluid-dynamics interpretation will be complete. This will be
accomplished in this chapter.

First, we require an interpretation for density, which has been im-
plied through the introduction of the compression, 1, in Chapter 2.
Working again with specific quantities, the density, p, is defined as
the reciprocal particle spacing. (The meaning could be made precise
through calculation of moments of a ILiouville equation. For our present
heuristic purposes, the looser definition will be sufficient.)

Second, we need an expression for heat (internal) energy.
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This comes from Eq. (11-3) » in which we substitute u 5= u + du for the
velocity, du being the fluctuation. Then the local energy per unit mass
is, on the average,

E=c21n£+lu2+£,_-(8u)2.

o

N

Now the term u2/2 represents the local kinetic energy of mean motion; all
the rest must be interpreted as heat eénergy. Combining the results of
Eqs. (II-8) and (II-10), we find that the expression for fluctuation
kinetic energy can be written c2A2/2, in which A = e'q/2. (Thus A 1s the
ratio of fluctuation amplitude to docal particle spacing.) The required
eéxpression for specific internal energy, I, is thus

I=c"mL .1l 242, (11-12)
Py 2

Finally, an expression for bressure is required. This can be derived
directly from the virial theorem in the case of our particular interparticle
force function. The details are given by Butler [II-6] » Who shows that

p = ¢ (1 + A9). (II-63)

[A straightforward derivation using the technique of .‘Réf. II-3 yields the
first part of Eq. ( II-13), in confirmation of the validity of that tech-
nique. Derivation of the second part could likewise be accomplished if a
proper dissipative force function were chosen; indeed the analysis in that
case actually would serve as a guide for the choice. ]

These results now can be combined to give the required equation of
state
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P = c2p + 201 - 2c2p In "')9" . (TT-1k%)
Q

(Note the factor 2 in the second term, confirmirg agreement with the sta-
tistical-mechanical equation for a polytropic gas with one degree of free-
dom.) The applicability of this result can be tested in a number of ways.
We first investigate whether or not the thermodynamic derivation of an ex~
pression for entropy agrees with the statistical result of Chapter 2.

The starting point is the equation

3 _ _p 98
-~ 2ar’

jn which 8 is a function of p and I. With Eq. (II-M), this becomes a

partial differential equation vwhose solution 1s
A
S = function of (ln -‘-> .

The function here is arbitrary, pbut a choice can be made to give complete
agreement with the statistical result, Eq. (II-11). This constitutes
the first confirmation of the fluid-dynamics interpretation.

For further investigation we need an expression for the sound speed

in the fluid, which in general is given by

- ®
S=const

A short calculation then gives for this case

W= c‘/ 1+ 3A2 . (11-15)
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Consider now the rarefaction at the left in the caleulation shown in
Fig. II-1. The envelope of the rarefaction is formed of two sound signals,
each moving relative to the fluid with speed w = c, These calculasted
bounds are shown in Fige II-1 by the straight lines passing obliquely
through X = 0, and it can be seen that agreement with the actual bounds
is excellent. In addition, fhe right-hand bound can be followed after
interaction with the shock. According to the theory of Chapter 2,
A = U/(2eV2), 8o thaet Eq. (II-15) gives w = 35.1 behind the shock,

Figure II-1 shows the contimuation with this sound speed beyond the
shock, and again excellent agreement is spparent,

One additional comparison can be made for the rarefaction region.
Application of the theory of characteristics to the solution of the rare-

faction problem shows that

u-cln-‘-)e—
o

is a constant through the rarefaction. For the example shown in Fig. II-1,
this gives the result for density in the rarefaction region:

P =p, exp <- -3-?-%5) = 0.453 Py

Thus the mean distance between particles after rarefaction passage should
be 2.21, again in excellent agreement with the observed separation.

The dynamics of the shock itself, in particular the variation of
shock propagation velocity with initial material velocity, is the first
comparison that gives any indication of significant discrepancy between
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the computer results and those of the simple heuristic model used for
analysis.

The shock-dynamics relationships are derived from four basic state-
ments: the three Rankine-Hugoniot conservation principles a.nd the equa-
tion of state. The first three are rigorously correct, so that any dis-
crepancy in the final comparison must beaxr directly on the adequacy of
the equation of state. This raises two important questions, which strike
deeply into the validity of particle-and-force models for fluid dynamics:
Are the particle dynamics completely capable of representation by an
equation of state, insofar as macroscopic studies are concerned? Or is
it possible to put the burden of discrepancy completely onto the approxi-
mations involved in deriving the particular equation of state for these
gstudies? These questions cannot at present be answered completely,
although it seems now that the answer to the first is: The dynamics
are almost capable of such a representation; the discrepancy is small in
many circumstances of interest. But such an answer prompts several new
questions, and in order to answer them, comparisons are still being made
petween particle-dynamics calculations and a variety of fluid dynamics
gituations for which solutions are known. Incidentally, it is easily
shown that these further investigations, to which a heat variable and
dissipative force are added, must be carried out in at least two space
dimensions, where enforced ordering among particles no longer occurs,
and interpenetrations must be anticipated. Dissipative addition in one

dimension converts the particle dynemics calculations ‘o familiar
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Lagrangian computing methods which are known to work properly in a wide
variety of applications.

We shall consider two expressions for the shock speed as a function
of initial material speed. The first is derived using the conservation
laws and the full equation of state. The other is a fictitious form, for
comparison, in which there are forced to be no fluctuations after shock
passage. For this we use the equations of state in which A = 0; that is,
P= c2p. We shall see that the computer results lie between these two,
suggesting that the fluctuations predicted by the heuristic analysis are
somewhat too strong.

The actual derivations, which follow standard technique, need not

be presented here. For the full equation of state, the algebraic solu-
tion must be performed numerically; for the fictitious case, a simple
closed solution can be found. The results are presented in Fig. II-3,
together with the results from mmerous computer calculations in which
the initial particle speeds were varied. In all cases, shock velocity
is relative to material ahead, and thus approaches ¢ = 31.62 as the
material velocity becomes small. The results themselves give no hint as
to whether the burden of discrepancy should be placed on the capability
of interpretation or upon the heuristic model used for that purpose.
It is therefore encouraging that the shocks shown in Part I are in good
agreement with their expected behaviors.

Other features in Fig. II-1 have been calculated, but the results

add no new extensions to the conclusions beyond those which can be
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Pig. II-3. Shock speed as function of material speed. Computer
results are shown by x; solid lines are theoretical.
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observed visually. Thus, for example, it can be seen that the second
shock in the upper left-hand corner results in a further strengthening
of the oscillations, as expected, but quantitative prediction yields
only that same qualitative result.

Thus we come to a restatement of the principal conclusions from
Part II of this report:

Te The Pasta~Ulam calculations showed fluid~-dynamics properties,
even though they lacked the two desirable features of correspondence ang
dissipation, because of the close relationship between fluctuations and
entropy and because of the capability of equation-of-state representatvion
even with fluctuations.

2. The improvements to be expected from the addition of dissipative
forces and from the broper use of force functions can result in a useful
fluid-dynamics method, even though the correspondence cannot be "instan-
taneous"” but must rely on statistical properties. The results of Part I
further strengthen this conclusion.

3. The statistical properties of true molecular assemblages are
likely to be amenable to computer studies with few particles, even for

strongly nonequilibrium brocesses involving important wall interactions,
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